
© 2009 IBM Corporation

IBM System zEnterprise Design:
Better Memory RAS through Novel Verification

Eldee Stephens – RAIM/ECC Hardware Designer

23 May 2013

A special thanks to Pat Meaney and Alexey Lvov for their provided graphics, and to Alexey who conceptualized and developed Blueveri

© 2009 IBM Corporation2

A quick introduction.....

 Joined IBM in 2002 after graduating from Duke University
 Started as member of POWER6 concept team, co-developed nest M2 model; various

timing and logic roles in FXU and L3C; also worked on chip timing
 Became pL3 unit lead in 2005
 Punted on Komal, and joined p6 nest bringup team
 Moved to POK in 2007, joined z10 bringup team, focusing on IO and packaging issues
 Joined zG MCU team in 2008, responsible for RAIM, among other things; continued to

work in bringup on zG, focusing on memory subsystem
 Continued MCU role for zHelix; appointed zNest bringup lead for zHelix
 Currently zNest bringup lead for zSphinx

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

 Married Leebah Nechama in 2004
 Daughter, Simcha Rivka, 8
 Son, Aharon Eliezer, 6
 Currently living in Waterbury, CT
 Hobbies include astronomy,

entomology, and retrocomputing

© 2009 IBM Corporation3

What is RAIM?

 RAIM is an acronym meaning
'Redundant Array of Independent
Memory,' á la RAID

 It is a combination of an additional
physical memory channel, a complex
recovery architecture, and a very
complicated ECC codepoint

 It takes up a large slice of real estate
on the chip, verification is very
difficult, and changes have been
sometimes been prohibitive due to
complexity

 But it's saved our bacon. More than
once. Since zGryphon the rates of
customer UIRA events in the memory
space have dropped dramatically.

 It means customers are happier and
IBM is saving money

 What next? Where can we improve?

“RAIM is the greatest thing since sliced
bread.”

– Jim Murray

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

© 2009 IBM Corporation4

zHelix Memory Controller – RAS View

Ch4
Ch3

Ch2
Ch1

A
S

IC

A
S

IC

Ch0

DIMM

CLK
Diff

CLK
Diff

C
R
C

C
R
C

DRAM

X

X

X

X

MCU0

E
C

C

RAIM

X
X

X

Layers of Memory Recovery

ECC
 Powerful 90B/64B Reed Solomon code

DRAM Failure
 Marking technology; no half sparing

needed
 2 DRAM can be marked
 Call for replacement on third DRAM

 DRAM errors in multiple channels can
be corrected, even with mark present

Lane Failure
 CRC with Retry
 Data – lane sparing
 CLK – RAIM with lane sparing

DIMM Failure (discrete
components, VTT Reg.)

 CRC with Retry
 Data – lane sparing
 CLK – RAIM with lane sparing

DIMM Controller ASIC Failure
 RAIM Recovery

Channel Failure
 RAIM Recovery

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

© 2009 IBM Corporation5

zHelix MCU Recovery: ECC/RAIM Protection

Marks/New Errors No Marks Single Chip Marked Two Chips Marked DIMM Marked or 3+
Errors

None GOOD GOOD GOOD GOOD

One Chip CE CE CE Service Request

Two Chips,
Same or Two Channel(s)

CE CE CE Call home for part
replacement

Full Channel Error
(CRC or other)

CE CE CE Call home for part
replacement

 No need for spare chips! If we 'know' in advance of a location where errors are extant, we
'mark' it. This can be applied on a DRAM or a channel basis. Marking ahead of time allows
us to find new errors on top of the known ones.

 Marks are much more flexible than spare DRAMs, and can keep the card cost down as well,
to say nothing of the reduced design cycle given simpler verification

 If we ever reach a threshold where the system can no longer correct dynamically, we 'call
home' to let IBM know to replace the defective part; the system continues to operate
without performance penalty in the interim

 Firmware is always looking at the health of DRAMs in the background

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

© 2009 IBM Corporation6

How big an effort was this thing?!

Verification

Product
Engineering

Research
Group

RAS Council

HW Bringup
and Test

Firmware

Logic
Design

and
uArch

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

 In a word, huge. Really, staggeringly,
colossally huge.

 Nineteen unique RLMs; 42
instantiations at unit level

 58 VHDL components for performing
GF(16) or GF(2^8) arithmatic
operations

 Thousands of latches
 Tens of millions of gates
 Multiple cycles to encode and

decode data; two parallel decoders
 Very significant PD deep dive to

solve pervasive timing problems
 Two months verifying the code
 One month implementing initial logic
 Five months RTX effort
 Four months formal verification effort

And then think of all the people involved! Three researchers, two verification engineers, two circuit and timing guys,
a perpetually frustrated unit integrator, and an exhausted (but very happy) designer and his plucky Honda Civic
racking up the miles between POK and Watson in Yorktown Heights.

© 2009 IBM Corporation7

What's the issue with existing verification technologies?

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

Random sampling:

Check all possible
combinations of input bits.

Normally ECC circuits
have several hundreds of
input bits. Checking of
2^100 cases will take time
till the end of the Universe.

Exhaustive checking:

Check 1 trillion of random
combinations of input bits.

99% of bugs hide in
“corner” cases. For example
a bug may show up only
when the first half of the
inputs are Boolean inverses
of the second half. Random
sampling will never detect
such a bug.

Formal verif at bit level:

Produce a formal proof of
correctness for all

combinations of inputs
simultaneously.

The problem is
exponentially hard in the
number of inputs.

Each particular problem
can (possibly) be solved
in a reasonable time by
trying a number of
specialized methods.

SIXTH SENSE
is a really powerful tool
utilizing this approach,
but at BIT LEVEL ONLY.

© 2009 IBM Corporation8

And that's the gate to innovation: “The Size of Verification”

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

 The RAIM design has been with us, more or less unchanged, since zGryphon
 The massive effort involved in creating something new simply isn't worth it to the

business: the time involved, the resources required
 Several points during the design cycle in both zGryphon and zHelix there were

moments when we knew of deficiencies present or improvements that could be made,
but the impact to the schedule was simply too great

 But we're IBMers! Innovation is our creed! We can not accept limitations of this sort.
 So what was the real gate? Verification. Every time.
 Minor changes to the code would require retooling the verification environments and

rerunning testcases, especially in the case of the formal verification effort
 We could get around circuit issues, we could get around timing issues. But the 'time

to verify' was simple too much. So we punted. More than once.

 But.... what if we could eliminate those issues? What if verifying the code took not
months, but days? What if minor changes could be verified in not days or weeks, but
minutes? What if we could do this without a dedicated formal verification engineer?

 It would mean we could prototype code implementations much, much more quickly. It
would mean the designer could innovate to his/her heart's delight, being able to verify
the changes on their own.

© 2009 IBM Corporation9

BLUEVERI:
Reason at the level of Galois Field elements themselves!

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

Blueveri

 Advantages: Unbelievably effective for error correcting codes verification. Easily
verifies ECC with thousands of input bits. Simplifies logic implementation in VHDL
substantially. Much, much faster than any other verification method to date.

 Disadvantages: Narrowly specialized. Only applicable to circuits based on Galois
fields algebra. This, though, includes nearly all ECC codes and many schemes used
for data encryption/decryption in hardware

 Less time to verify, less logic to write, less resources required across the project.
Novel codes can be implemented and verified far more quickly than in zGryphon!

© 2009 IBM Corporation1
0

Verification in a bit-oriented world....

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

c

Prove that if

x3 xor y3 = 0,

x2 xor y2 = 0,

x1 xor y1= 0,

x0 xor y0 = 0

then

c = 1.

© 2009 IBM Corporation1
1

Verification in Blueveri....

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

c

Prove that if

x + y = 0

then

c = 1.

© 2009 IBM Corporation1
2

Verification in Blueveri (part 2)

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

Galois Field operations

 ADD, MULT, DIV operations. In fact
any fixed set of unary operations on
GF(2k) symbols which are linear over
GF(2)

 So that means things like
SQUAREing operations. Or roots. Or
bit-level permutations.

 It means it can digest conditional
gate logic using when/else
statements or simple AND/OR logic

 It understands the concepts of
dynamic symbols and constants

 Blueveri is capable of looking at a complex design and 'understanding' what the
various gates actually do mathematically.

 It also understands basic combinatorial logic which is not operating on GF(2k)
symbols, such as basic control logic and dataflow controls

 Boolean operations are broken down
into elementary operations such as
AND, OR, NOT, and XOR gates

 Tests on signals for constant values
are also supported, so it 'sees'
signals as being constant zero or
constant non-zero when building the
graph used internally as it walks
through the design to minimize
runtime

Boolean operations

© 2009 IBM Corporation1
3

Example Using Blueveri: Simple Circuit and Check

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

BEGIN_CHECK “THREE ERRORS”

 ALGEBRAIC_CONSTRAINTS_ON_GF_INPUTS;

 M1 != 0;
 L1 != 0;
 M2 != 0;
 L2 != 0;
 M3 != 0;
 L3 != 0;
 L1 != L2;
 L1 != L3;
 L2 != L3;
 M4 == 0;
 M5 == 0;
 M6 == 0;
 M7 == 0;

 BIT_EXPECTED_VALUES

 UE must be ‘1’;

END_CHECK

Note: L, M, and S in this example
are all multi-bit GF symbols

© 2009 IBM Corporation1
4

Example Using Blueveri: Performance Comparison

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

UE Flag Decoder

Error Magnitude Computation
 Hours become minutes;

minutes become seconds;
solutions previously not
possible are now reachable

 This means changes, minor or
major, to both the underlying
code and implementation can
be verified much, much quicker

 The check syntax is easy for
the designer to use and
understand and the simplified
VHDL syntax now possible is
also a time-to-completion boon

symbol errors expected UE symbol size input bits Blueveri Sixth Sense

1 no 8 bits 16 Success after 0.1sec Success after 14sec

2 yes 8 bits 32 Success after 1sec Gives up after 24hours

3 yes 8 bits 48 Success after 1sec n/a

4 yes 8 bits 64 Success after 33min n/a

errors symbol size input bits Blueveri Sixth Sense

2 8 bits 32 Success after 2sec Gives up after 24hours

3 8 bits 48 Success after 2.1sec n/a

4 8 bits 64 Success after 2.1sec n/a

5 8 bits 80 Success after 2.3sec n/a

6 8 bits 96 Success after 3.1sec n/a

7 8 bits 112 Success after 49.4sec n/a

8 8 bits 128 Success after 8min n/a

9 8 bits 144 Success after 53min n/a

© 2009 IBM Corporation1
5

Summary

 RAIM has been of major benefit to IBM, both financially and in terms of customer
satisfaction and competitive advantage over Intel and HP

 To duplicate our effort with RAIM would take a designer with knowledge of linear
algebra and finite field analysis, formal and random verification efforts, and
significant resistance to new features added or changed during the design cycle due
to impact to verification

 Blueveri solves all of this: it makes the design easier for the designer, it allows rapid
and formal proofs of a code and its underlying implementation, and it reduces the
personnel requirements

 Blueveri can be a key component to further radical RAS innovation in the memory
space going forward

 Blueveri is already being used in ECC logic delivered by IBM Research including in
POWER8 and in the L4 quad ECC for zSphinx

 In addition as a side project Blueveri is being used to formally verify the zSphinx
RAIM implementation to find areas where Blueveri can improve; new features were
added to the tool during this exercise and it continues the deep cooperation on RAIM
between IBM Research and IBM STG begun back in 2008

IBM System zEnterprise Design: Enabling Novel Memory RAS Enhancements in a post-RAIM World

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

