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Abstract—In this article we describe a class of error control
codes called “diff-MDS” codes that are custom designed for
highly resilient computer memory storage. The error scenarios
of concern range from simple single bit errors, to memory
chip failures and catastrophic memory module failures. Our
approach to building codes for this setting relies on the concept
of expurgating a parity code that is easy to decode for memory
module failures so that a few additional small errors can be
handled as well, thus preserving most of the decoding complexity
advantages of the original code while extending its original intent.
The manner in which we expurgate is carefully crafted so that
the strength of the resulting code is comparable to that of a
Reed-Solomon code when used for this particular setting. An
instance of this class of algorithms has been incorporated in
IBM’s zEnterprise mainframe offering, setting a new industry
standard for memory resiliency.

I. INTRODUCTION

The main memory of the majority of modern computer
servers is structured so any given read or write request from
a processor is serviced through a parallel access to multiple
Dynamic Random Access Memory (DRAM) chips. Error
control codes whose codewords span these chips are used
routinely to correct single bit errors caused, for example, by
alpha particles and cosmic rays [1], [2], [3]. Failures affecting
multiple bits have also been observed, ranging from a small
section of a chip to entire chip failures. For this type of
occurrence, servers employ symbol (as opposed to bit) oriented
codes capable of correcting bursts of bit errors [4], [5].

Our goal is to present coding techniques that further protect
a server against another type of failure that arises from the
manner in which chips are organized within a memory system.
In systems architecture, a memory channel is an independent
physical construct that a processor uses to communicate to
a group of memory chips that are often physically placed in
a memory module; typically a processor will have multiple
memory channels and in some instances distribute an ECC
word over more than one channel. Sometimes it is the case that
the design of a memory channel has single points of failure.
For example, the chips in a memory channel may share a
memory buffer in common which may fail, and/or may share
a common clock signal that can also result in correlated errors.
The goal is then to design a memory system that can survive
entire memory channel errors, in addition to the kinds of errors
described earlier.

IBM has introduced a mainframe server (zEnterprise) that
possesses this kind of memory resilience. From an error
control code design perspective, the technical challenges that
needed to be overcome relate to the requirement of obtaining a
reliability and redundancy optimum design while keeping the
complexity of the design to a point in which very aggressive
latency, bandwidth and chip circuit area requirements set by
a main memory application are met.

Our investigation on how to attain these goals has led to
a new class of error control codes which we call diff-MDS
codes for reasons that will be clear later. In this article, we will
systematically develop the foundations for how these codes are
designed and analyzed. The basic concept we employ is that of
code expurgation - that is, the process of removing codewords
from an error correcting code in order to improve its error
correcting capabilities. The code that we will expurgate will
be designed as the simplest possible code that can correct
the largest failure mode we will face, in this particular case,
memory channel failures. The expurgation has the goal of
providing additional redundancy to handle individual chip
errors, to locate memory channel failures and to verify the
accuracy of any corrections. The expurgating method is a key
technical contribution of this article.

The article is organized as follows. In Section II we will
define mathematically the problem to be solved, while moti-
vating the problem with characteristics of the memory system
application. In Section III we will motivate and introduce the
concept of diff-MDS codes. In Section IV we will give a result
on the error correcting and detecting capabilities of what we
call expurgated simple parity check codes, which contain diff-
MDS codes as a subclass. In Section V we give a methodology
for building diff-MDS codes. Finally in Section VI we give a
brief comparison of our code construction to Reed-Solomon
codes. An Appendix with ancillary material is included at the
end. The memory system that incorporates elements discussed
in this article is discussed in a separate publication [6].

II. PRELIMINARIES

The error control codes that we will be discussing are
defined over an N × M array of symbols, each of them
comprised of b bits. We will regard each symbol to be an
element of the Galois Field with 2b elements; we denote
this Galois Field as GF (2b). In Table I we describe how
these symbols are labeled and organized. In our application, a
column is a memory channel, and any element of a column is
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ARRAY OF SYMBOLS IN THE ERROR CONTROL CODE. THERE ARE M

COLUMNS AND N ROWS IN THE ARRAY.

a memory chip. The upper index in parenthesis in d(j)i denotes
the channel index. The subscript indicates the chip within the
channel. From these N × M symbols, k will be devoted to
storing data and r = N ×M − k will be used as redundant
symbols.

Typically, a machine runs error free with occasional tem-
porary errors affecting one symbol from Table I. Nonetheless,
a hard error -whether single bit or multibit- may take place,
and from that point onwards there is a significantly higher
likelihood of an error being perceived at the associated symbol.
Information about persistent faults is stored in the marking
state of the memory (see Figure 1) - for a description of the
techniques for gathering and maintaining this information see
the associated publication [6]. Whenever something is marked
(as potentially with errors) the decoder treats the associated
symbol or symbols as erasures, in the standard sense of
information and coding theory. Doing so is expected to allow
the decoder to correct all marked symbols and potentially new
additional errors as well. We assume that a maximum of e chip
marks may be stored for use in the decoding of a codeword
of the error control code. In the most common use, these
marks are applied sequentially as the system discovers hard
chip errors, each time causing the marking state in Figure 1 to
transition to an adjacent state on the right until no more chip
marks are available.

In addition to single symbol errors, a memory channel may
fail, resulting in a new multi-symbol error that is contained
in a column in Table I. The decoder is expected to deduce
entirely on its own the memory channel containing the multi-
symbol error, even in the presence of chip marks in any place
of the memory array, although in some instances there may
be independent indications that a channel is failing [6]. Using
variants of well known arguments (see the Reiger [7] and
Singleton [8] bounds) it is possible to deduce that it is math-
ematically impossible to design any code that accomplishes
the task of locating and correcting (autonomously) the failing
channel with 100% certainty unless 2N + e ≤ r. Nonetheless,
as we shall see, it is still feasible to find a failing channel with
overwhelmingly high probability. Furthermore once the bad
channel is located (by any available means, this is either by
the decoder or by another agent), then a system that achieves
100% correction of this channel need only satisfy the relation
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number of chip marks
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Fig. 1. Allowed transitions for array mark states. In addition to the state
information of this diagram, the overall mark state includes a pointer to which
chips and/or channel have been marked as bad.

N + e ≤ r, which is a large improvement since typically N
is large. This leads to the notion of a channel mark, which
is similar to the idea of a chip mark, although in this case
applied to an entire channel. Whenever a channel mark is in
place, the decoder no longer is required to find the location of
a bad channel and may assume instead that the bad channel
is the one pointed to by the channel mark. The judicious
use of channel marks by a memory system and the use of
alternate means for locating failing channels [6] results in the
elimination, for all practical purposes, of the problem caused
by the finite probability of not being able to locate failing
channel.

The reader familiar with the theory of Reed-Solomon (RS)
error correcting codes will notice that as long as NM ≤
2b − 1, RS codes appear to be an ideal candidate for this
problem, since they are Maximum-Distance-Separable (MDS)
[9] and hence have strong optimality properties for settings
with erasures and/or unknown symbol errors. It can be indeed
shown that this is the case from the standpoint of the degree
of reliability that these codes offer. Nonetheless the large burst
of length N symbols that needs to be corrected in potential
combination with other errors can introduce implementation
complexity and performance problems, particularly in the high
performance setting of our problem (see Section VI).

The question that this article explores is whether there is
a class of error control codes with favorable implementation
complexity characteristics that offer comparable reliability as
Reed-Solomon codes when applied to the memory system re-
liability problem just described. Note that if the only problem
we had was to correct a memory channel in error, and we
always knew which channel was in error, then we could have
one of the M channels be a simple parity of the other M − 1
channels as it is done in RAID systems, with decoding being
a straightforward operation. For this simple abstract problem,
clearly Reed-Solomon codes are unnecessary. One the other
hand, a RAID scheme where one channel is a parity check of
the other channels code does not provide means for locating
autonomously a failing channel nor for correcting chip failures
within the channel.

Our solution to this problem is to carefully augment the
RAID scheme described above with a relatively small amount
of additional redundancy in order to handle these additional



complications. Our emphasis on implementation complexity
parallels earlier developments in the theory of array codes [10],
[11] which have found widespread use in RAID systems. The
mathematical problem setup follows next.

A. Mathematical problem definition

For any positive integer n, let GF (2b)n denote the space
of vectors of length n with elements in GF (2b). Let d ∈
GF (2b)NM denote a vector that is stored in any given memory
location. The memory has M channels and thus we write

d =
(
(d(0))T (d(1))T · · · (d(M−1))T

)T
,

where T denotes vector/matrix transpose, and where

d(i) =
(
d
(i)
0 d

(i)
1 · · · d

(i)
N−1

)T
for i ∈ {0, · · · ,M − 1}. Thus for each j ∈ {0, · · · ,M − 1},
d(j) ∈ GF (q)N and for i ∈ {0, · · · , N − 1}, d(j)

i = djN+i.
We shall assume that d is a codeword of the code defined by
a parity check matrix H that has dimensions (N +Δ)×NM
and entries in GF (2b). The parameter Δ > 0 controls the
excess redundancy one possesses to provide protection against
individual symbol errors, for locating channel errors and for
ensuring that any corrections that are applied are sound.

Any codeword of the code by definition must satisfy Hd =
0. The check matrices of interest can be written as

H =

(
IN IN · · · IN
Ĥ(0) Ĥ(1) · · · Ĥ(M−1)

)
(1)

where IN denotes the N ×N identity matrix and

Ĥ
Δ
=
(
Ĥ(0) Ĥ(1) · · · Ĥ(M−1)

)
(2)

where Ĥ is a Δ × MN matrix. The essential constraint in
(1) is that

∑M−1
j=0 d(j) = 0. We call a code with check matrix(

IN IN · · · IN
)

a simple parity check code. Because
the codes (1) are obtained by expurgating codewords from a
simple parity check code, we call any code whose parity check
matrix can be written as (1) an expurgated simple parity check
code, and we call Ĥ the expurgating matrix.

The marking state of the memory describes
1) whether a channel is marked and the location of the

possible channel mark if applicable.
2) how many chips are marked (up to e chips), including

the information of which chips are marked.
If there is no channel mark and u chip marks, we will say we
are in the marking state (0, u). If there is a channel mark and
u chip marks, we will say in are in the marking state (1, u).
This notation is in reference to Figure 1, where the first index
refers to a row and the second index refers to a column. Note
that to be accurate, the marking state also includes the identity
of the entities to which marks point to; this shorthand will be
often useful though and should cause no confusion.

In order to compare the strength of various choices of H
(not necessarily expurgated simple parity check codes), we
need to settle on a precise set of metrics for evaluating codes.
We will now give a description of these metrics.

For all marking states of the form (0, u), we assume that in
every marked chip -if any- there can be any kind of error,
or no error at all. In addition to an assumption that any
errors on marked chips can be corrected, the code’s strength
is characterized by

• The maximum number t(0,u)c of simultaneous chip errors
it can correct.

• The maximum number t(0,u)d of simultaneous chip errors
it can detect or correct.

• The probability p(0,u)c of correcting a channel error, under
the random channel error model (see below).

A random channel error is a channel error which can be
modeled as 1) choosing the channel in error from the set
{0, 1, · · · ,M−1} uniformly at random and 2) choosing for the
error in the chosen channel a vector uniformly from GF (2b)N .
Note that this includes the possibility that no error at all is
added, nonetheless this is of no consequence to the analysis
for sufficiently large (but still practical) b and N . Note also
that this error model allows for channel errors on channels
where there may be chip marks.

For all marking states of the form (1, u) we assume that in
the marked channel and any marked chip there can be any kind
of error or no error at all. All marked errors are assumed to
be correctable. In addition, the code’s strength is characterized
by

• The maximum number t(1,u)c of simultaneous chip errors
it can correct.

• The maximum number t(1,u)d of simultaneous chip errors
it can correct or detect.

Given (N,M, k) and e, the number of marked chips one
can have, we are interested in a characterization of which
values of {t(0,u)c , t

(0,u)
d , p

(0,u)
c , t

(1,u)
c , t

(1,u)
d }e−1

u=0 can be attained
practically. An answer to this is developed in Sections III, IV
and V.

III. DIFF-MDS CODES

For j ∈ {0, · · · ,M − 1}, we define the matrix Ĥ(−j) by
deleting the jth component matrix from Ĥ and subtracting it
from each of the remaining matrices. For example, the case
when j is neither 0 nor M − 1 is as follows:

Ĥ(−j) =
(
Ĥ(0) − Ĥ(j) · · · Ĥ(j−1) − Ĥ(j)

Ĥ(j+1) − Ĥ(j) · · · Ĥ(M−1) − Ĥ(j)
)
.

The definition of Ĥ(−0) and Ĥ(−(M−1)) follow directly
from our explanation and example above. Note that in GF (2b),
subtraction is identical to addition, so the use of the − sign is
superfluous. Nonetheless, all of the results in this article can
be extended to finite fields with characteristic other than 2, and
hence our use of the subtraction sign. For j ∈ {0, · · · ,M−1}
and for an arbitrary vector v ∈ GF (2b)NM , let v{−j} the
vector obtained by deleting from v the jth subcomponent. We
illustrate this with an example when j is neither 0 nor M −1:

v{−j} = (v(0), · · · ,v(j−1),v(j+1), · · · ,v(M−1)).



Note that Ĥ(−j) is a Δ × N(M − 1) matrix with elements
in GF (2b). Let A be any matrix with entries in GF (2b). Let
d(A) denote the minimum symbol distance of the code defined
by parity check matrix A. This is, d(A) is the largest integer
such that any choice of d(A) − 1 columns of A are linearly
independent. A code with parity check matrix is said to be
Maximum-Distance-Separable (MDS) if d(A) − 1 is equal to
the number of rows of A.

We say that Ĥ is diff-MDS if Ĥ(−j) is Maximum Distance
Separable (MDS) for every j ∈ {0, 1, · · · ,M − 1}. We will
motivate the definition of diff-MDS codes with an example
of how one might decode a code whose parity check matrix
has the form (1). In our example, channel 0 is affected with a
“serious” error δ(0) ∈ GF (2b)N which is any nonzero vector.
Channels 1 through M−1 are affected with errors ξ(1) through
ξ(M−1), which collectively, have exactly t nonzero entries (and
hence t errors). Thus an encoded vector d is corrupted so that

v =

⎛
⎜⎜⎜⎝

d(0) + δ(0)

d(1) + ξ(1)

...
d(M−1) + ξ(M−1)

⎞
⎟⎟⎟⎠

is what is retrieved from the memory. Note that
M−1∑
j=0

v(i) = δ(0) +

M−1∑
j=1

ξ(j) +

M−1∑
j=0

d(i) = δ(0) +

M−1∑
j=1

ξ(j).

Suppose that we somehow knew that the “serious” channel
error δ(0) was in channel 0. Subtracting

∑M−1
j=0 v(i) from

channel 0 in v we obtain

w =

⎛
⎜⎜⎜⎝

d(0) −
∑M−1

j=1 ξ(j)

d(1) + ξ(1)

...
d(M−1) + ξ(M−1)

⎞
⎟⎟⎟⎠ .

Note that we have succeeded in removing the large error δ(0),
but the smaller errors have now “propagated” from channels
1 through M − 1 to channel 0. Now let us compute the Ĥ-
syndrome of w:

Ĥw = −Ĥ(0)

⎛
⎝M−1∑

j=1

ξ(j)

⎞
⎠+

M−1∑
j=1

Ĥ(j)ξ(j)

=

M−1∑
j=1

(Ĥ(j) − Ĥ(0))ξ(j) = Ĥ(−0)w{−0}

where the last equality follows from the definitions made at
the beginning of this section.

The key observation to make here is that a decoder can ac-
tually compute the Ĥ(−0)-syndrome of w{−0}, which contains
every other error not in channel 0. Thus if the linear code with
parity check matrix Ĥ(−0) can correct t errors, we will be able
to correct the error in channel 0 and the additional t errors in
the other channels.

From this discussion it becomes clear that if one must use
the restriction (1), then one would like for the linear codes

with parity check matrices Ĥ(−0), · · · , Ĥ(−(M−1)) to be good
codes in the sense of minimum distance as well as in the sense
of their ease of decoding.

The reader now should understand why the diff-MDS prop-
erty is important in this particular setting. If Ĥ is diff-MDS,
then the linear codes defined by Ĥ(−0), · · · , Ĥ(−(M−1)) are
precisely MDS and hence optimum from the standpoint of
minimum distance.

The present discussion will be elaborated upon in the
following section, where we will characterize various prop-
erties of expurgated simple parity check codes as well as the
particular class of diff-MDS codes.

IV. THE PERFORMANCE OF EXPURGATED SIMPLE PARITY

CHECK CODES

Throughout this and the subsequent sections, we assume
that H satisfies (1); as usual Ĥ denotes the bottom Δ rows
of H . Define the “diff-minimum distance” of Ĥ as

ddiff(Ĥ) = min
0≤i≤M−1

d(Ĥ(−i)).

This distance notion determines the majority of the key proper-
ties expurgated simple parity check codes. A first observation
is that it is linked to the conventional minimum distance of
the code defined by H as follows:
Lemma 1: The matrix H of an expurgated simple parity

check matrix code together with its expurgating matrix Ĥ (see
Equations (1, 2)) satisfy:⌈

ddiff(Ĥ)

1− 1/M

⌉
≤ d(H) ≤

⌈
Δ+ 1

1− 1/M

⌉

where Δ is the number of rows in Ĥ .
For a proof of this result, see the Appendix. The bounds

in this lemma are tight when Ĥ is a diff-MDS matrix since
in this case we have ddiff(Ĥ) = Δ + 1. This lemma makes
it clear that our codes are far from being MDS. Nonetheless
because the error patterns we target are fairly specific, this
is not of concern; our goals are different from, for example,
those of [12] although low density parity check matrices and
the MDS concept also play an important role in our work.

The following result summarizes the capability of a partic-
ular decoding architecture for expurgated simple parity check
codes. The decoder architecture is given in the proof.
Theorem 1: Assume u ≥ 0 chips are marked. Further

assume that

u+ t(0,u)c + t
(0,u)
d < d(H) (3)

u+ t
(0,u)
d < ddiff(Ĥ) (4)

u+ t(1,u)c + t
(1,u)
d < ddiff(Ĥ) (5)

N + 1 ≥ ddiff(Ĥ). (6)

Then an expurgated simple parity check code admits a decoder
that can

1) in the absence of a channel mark, in addition to correct-
ing the errors in the marked chips,



• detect (but not necessarily correct) up to t(0,u)d chips
in error,

• correct up to t
(0,u)
c chips in error,

• detect any channel error, and correct it with proba-
bility at least

p(0,u)c ≥ 1−
M − 1

2b(ddiff(Ĥ)−1−u)
(7)

under the random channel error model,
2) in the presence of a channel mark, in addition to cor-

recting the errors in the marked channel and the marked
chips,

• detect (but not necessarily correct) up to t(1,u)d chips
in error,

• correct up to t
(1,u)
c chips in error.

Remark: The assumption (6) is a technical condition that we
use to more easily obtain the estimate (7); it will be weakened
in a subsequent publication.

A. Proof preliminaries

The decoder that will be given in the proof will be based
on processing the syndrome of the vector retrieved from the
memory, as it is common in decoders for linear codes. Suppose
that we have a vector v = x+ e ∈ GF (2b)NM that we wish
to decode, where x is the vector originally written to memory.
Define the syndromes

s = Ĥv, z =

M−1∑
j=0

v(j). (8)

The channel modified syndromes are defined as:

s(−j) Δ
= Ĥ(−j)v{−j} = Ĥ(−j)e{−j}. (9)

Let {m0, · · · ,mu−1} ⊂ M
Δ
= {0, · · · , NM − 1} denote the

chip marks passed to the decoder.
If A1 and A2 are any two sets containing sequences from

GF (2b) of identical length, then the set A1 + A2 is defined
by the following:

A1 +A2 = {ξ : ∃a1 ∈ A1, a2 ∈ A2 such that ξ = a1 + a2} .

Also note that in a field of characteristic 2, such as GF (2b),
the the addition and subtraction operators are identical.

Let us now define basic classes of error patterns. First we
have the patterns where the only errors are in channel j:

Aj =
{
ξ ∈ GF (2b)NM : ξ{−j} = 0

}
.

We also define A = ∪M−1
j=0 Aj . Next we have the “up to t

random errors” case, for t > 0:

Bt =
{
ξ ∈ GF (2b)NM : w(ξ) ≤ t

}
where w(·) denotes the number of nonzero entries in the vector
argument. Finally, define the set of errors patterns that only
affect chips that are marked:

C =
{
ξ ∈ GF (2b)NM : if ξj �= 0 for some j ∈ M

then j ∈ {m0, · · · ,mu−1}
}
.

Note that each of these sets contain the zero vector and
in general can intersect in other ways. Finally note that by
definition t

(0,u)
d > t

(0,u)
c , t(1,u)d > t

(1,u)
c .

B. Proof in the case there is a channel marked

Suppose that channel j∗ is marked. In this case we assume
that the error pattern satisfies e ∈ Aj∗ + B

t
(1,u)
d

+ C, since

t
(1,u)
d > t

(1,u)
c . We assume, without loss of generality, that

all of the u chip marks are not located in channel j∗ since
the following argument can be applied by removing any such
marks, thereby reducing the value of u. Note that from (9), the
syndrome s(−j∗) depends only on e{−j∗}, which excludes any
errors in channel j∗. We can regard the code with parity check
matrix Ĥ(−j∗), which has minimum distance at least ddiff(Ĥ),
as a u-erasure, t(1,u)c random error correct and t

(1,u)
d random

error detect code as long as the condition (5) of the theorem is
satisfied. Using any available decoder for this code results in
recovering the error pattern e{−j∗} ∈ GF (2b)N(M−1), unless
an uncorrectable error has been detected. One can then recover
the error in the channel marked through the relation e(j

∗) =
z −

∑
i�=j∗ e

(j). At this point all errors have been recovered
(if the errors were correctable) and the decoder can add the e

vector to v to retrieve x.

C. Proof in the case where there is no channel marked

The decoder for this case operates in two main steps. In the
first step, the decoder searches for a unique e′ ∈ B

t
(0,u)
c

+ C

such that He′ = [ zT sT ]T . If it succeeds, then the error
is claimed correctable, e′ is the error pattern to be added to
the data that was read from the memory and the decoding
finishes. If it fails, then the decoder next searches for a unique
e′ ∈ A + C such that He′ = [ zT sT ]T . As before if it
succeeds then the decoder applies e′ to the data, otherwise
an uncorrectable error is declared. For the first step, we use a
u-erasure, t(1,u)c random error correct and t

(1,u)
d random error

detect decoder which by classic coding theory exists as long
as condition (3) is satisfied. We will assume that this decoder
will also ensure that the final correction e′, if a correctable
error has been found, has the same syndromes as the retrieved
data, so that all information provided by the s, z syndromes
has been exhausted.

Now suppose that e ∈ (A + C) \ (B
t
(0,u)
c

+ C). First we
claim that for any a ∈ B

t
(0,u)
c

+ C, He �= Ha. This is an
important conclusion that ensures that error patterns in (A +
C)\(B

t
(0,u)
c

+C) are not mistakenly corrected in the first step
of the decoder, which is not equipped to deal with them. If∑

j e
(j) − a(j) �= 0 obviously He �= Ha, so we can assume∑

j e
(j) − a(j) = 0. Note that e − a ∈ Aj + B

t
(0,u)
c

+ C

for some j ∈ {0, · · · ,M − 1}. This implies Ĥ(e− a) =
Ĥ(−j)(e{−j} − a{−j}). Therefore, there are not more than
u + t

(0,u)
c nonzero elements in the vector (e{−j} − a{−j})

and thus by (4) and the fact that t(0,u)c < t
(0,u)
d , we have that

Ĥ(e− a) �= 0, proving the claim.
Recall that we guarantee detection (but not necessarily

correction) in the case e ∈ B
t
(0,u)
d

+C. As a matter of fact, if



e ∈ (B
t
(0,u)
d

+ C) \ (B
t
(0,u)
c

+ C) then by construction step 1
declares an uncorrectable error. What we would like to show
is that under this condition for e, the subsequent decoder in
step 2 either correctly decodes the pattern or declares an un-
correctable event; stated differently we want to guarantee that
in this case the decoder never miscorrects. Although we have
not yet defined how the decoder in the second step operates,
it will suffice to state that whatever correction it computes,
it will have exactly the same syndromes as the retrieved data
(as the decoder for the first step does) or otherwise declare
an uncorrectable error. Under this assumption, we can show
that miscorrection never happens by demonstrating that if
a ∈ A+C, and a �= e, then Ha �= He. The proof for this uses
same arguments employed in the previous paragraph, with the
exception that the assumption (4) is used directly.

The decoder next processes all channel modified syndromes
(9). We note that the syndrome s(−j) does not contain any
contribution from errors in channel j, including any potential
error in a chip marked if that chip happens to be in channel j.
The decoder interprets, for each j ∈ {0, · · · ,M −1} the code
with parity check matrix Ĥ(−j) to be a code that can correct
up to u erasures. The corresponding decoder is the one cited
by the following Lemma:

Lemma 2: Let A be a r × n parity check matrix of a
linear code with entries in GF (2b). Let u < d(A) − 1. Then
there exists a decoder g : {0, · · · , n − 1}u × GF (2b)n →
{correctable, uncorrectable} × GF (2b)n for the linear code
with this parity check matrix A with the property that it can
correct any u erasures. Now let {i0, · · · , it−1} ⊂ {0, · · · , n−
1} be distinct but otherwise arbitrary indices, with t ≥
d(A) − 1. Let x ∈ GF (2b)n be a codeword of this code.
Let e ∈ GF (2b)n be such that ei is chosen independently
and uniformly at random from GF (2b) if i ∈ {i0, · · · , it−1};
no assumption is made about the remaining entries of e.
Whenever the decoding x+ e, this decoder will mistakenly
declare “correctable” with probability at most 1/2b(d(A)−u−1)

regardless of the erasure locations.

A proof of this Lemma can be found in the Appendix.
For each j ∈ {0, · · · ,M − 1}, the vector x{−j} + e{−j}

is passed to a decoder for the parity matrix H(−j), and the
outputs from these M decodings are collected. If one and only
one of these decodings results in a “correctable” outcome,
then the corresponding channel is claimed by the decoder to
be the channel that failed. Decoding is then finalized in a
manner similar to Subsection IV-B, since at this point we can
consider the channel that failed to be marked (in this case
by the decoder itself). If two or more decodings result in a
correctable outcome, then the decoder claims an uncorrectable
error.

If e ∈ (Aj∗ + C) \ (B
t
(0,u)
c

+ C) for some j∗, then it

is easy to see that during the decoding of x{−j∗} + e{−j∗}

assuming a code with check matrix Ĥ(−j∗) we will obtain a
correctable outcome as there are no more than u erasures to
be solved for. Thus for the pattern to be correctable by the
main decoder, none of the other M − 1 decoders must claim

a correctable event. We now compute the probability of an
uncorrectable error under the assumption that channel j∗ has
been corrupted with a vector e(j

∗) that is drawn uniformly
at random from GF (2b)N . In Lemma 2 substitute t ← N ,
n ← N(M − 1), r ← Δ, A ← Ĥ(−j) and use (6) to obtain
the assertion that if j �= j∗, then when decoding x{−j}+e{−j}

for the parity check matrix Ĥ(−j) will result in a miscorrection
with probability at most 1/2b(ddiff(Ĥ)−u−1). Since there are
M − 1 different decodings one will perform (in addition to
the one at channel j∗) using the probability union bound we
find that the probability of two or more correctable decodings
is at most (M − 1)/2b(ddiff(Ĥ)−u−1) finalizing the proof of the
Theorem. We stress to the reader that the main decoder never
miscorrects when any channel fail happens in any state of
the form (0, u); instead it always detects, and with very high
probability, corrects. The miscorrection events alluded to are
purely a useful logical device that is internal to the decoder.

V. A FAMILY OF PRACTICAL DIFF-MDS CODES

Recall that the codes under consideration have a parity
check matrix that can be written as in (1, 2):

H =

(
IN IN · · · IN
Ĥ(0) Ĥ(1) · · · Ĥ(M−1)

)

where IN denotes the N ×N identity matrix and

Ĥ =
(
Ĥ(0) Ĥ(1) · · · Ĥ(M−1)

)
is a Δ×MN matrix. The family of practical codes we propose
chooses, for k ∈ {0, · · · ,M − 1}, i ∈ {0, · · · ,Δ − 1}, j ∈
{0, · · · , N − 1},

Ĥ
(k)
i,j = X2i

j,k (10)

where the {Xj,k} are all distinct elements of GF (2b). The
primary reason for choosing this construction is because in a
field with characteristic 2 (such as our field GF (2b)), for any
a, b elements of such field we have a2 + b2 = (a+ b)2. As a
consequence, the matrices Ĥ(−k), defined at the beginning of
Section III, can be written in a manner similar to (10), creating
algebraic structure that we can then exploit. Specifically, the
M − 1 components of Ĥ(−k) have the form, for l �= k,

(Ĥ(l) − Ĥ(k))i,j = X2i

j,l −X2i

j,k = (Xj,l −Xj,k)
2i . (11)

This enables a systematic analysis of the properties of the
matrices Ĥ(−j)which will connect the theory of memory
storage array codes with the form (10) with the theory of
binary codes. Not any choice for {Xi,j} will be suitable for
our goals; to find good choices we will first establish the binary
codes connection and then give one design technique.

A. Connection to binary codes

In this and the following subsection, we will make use of
the fact that an element of GF (2b) can be described using
b elements of GF (2) using any given basis for GF (2b) over
GF (2). If a ∈ GF (2b), we will denote by [a] the binary



column vector containing the b coefficients of the expansion
of a using the given basis, indexed [a]0 through [a]b−1:

a ∈ GF (2b) ←→ [a] ∈ GF (2)b

[a] =
(
[a]0 [a]1 · · · [a]b−1

)T
.

The central tool for this section is the following result,
which is a direct consequence of Lemma 1 of [14]; see also
the preceding [15]:
Lemma 3: Let A be a r×n matrix with elements in GF (2b)

with the property that for i ∈ {2, · · · , r}, Ai,j = A2
i−1,j .

Furthermore, let B be the b× n binary matrix given by

B =
(
[A0,0] [A0,1] · · · [A0,n−1]

)
.

Then d(A) = min(r + 1, d(B)) where d(A) is the minimum
Hamming distance measured in symbols from GF (2b) and
where d(B) is the minimum Hamming distance measured in
bits.

In order to connect this lemma with the goal of computing
ddiff(Ĥ) for a code of the form (10), we refer the reader
to Figure 2, where we illustrate a portion of the process of
computing d(H(−0)). At the top, we have the Δ×NM matrix
Ĥ . The bottom Δ − 1 rows of this matrix are gray because
the minimum distance of the {Ĥ(−j)}j codes depends only
the first row, as per Lemma 3. In the subsequent step, we
show Ĥ(−0) restated to incorporate (11). In the last step, we
take the first row of the previous step, which is comprised of
N(M − 1) elements of GF (2b) and substitute each element
with a column vector comprised of b bits. This column vector
contains the coefficients of the expansion of the corresponding
GF (2b) element using the given basis for GF (2b) over
GF (2). The resulting b × NM binary matrix is denoted by
B(−0). We take advantage of this example to similarly define,
by an omitted extension, B(−j) for j ∈ {1, · · · ,M − 1}.

Given Lemma 3, we have that d(Ĥ(−j)) = min(Δ +
1, d(B(−j))) and thus

ddiff(Ĥ) = min
j∈{0,··· ,M−1}

min(Δ + 1, d(B(−j)))

= min

(
Δ+ 1, min

j∈{0,··· ,M−1}
d(B(−j))

)
.

Thus if in particular d(B(−j)) = Δ + 1 for every j ∈
{0, · · · ,M − 1}, then ddiff(Ĥ) = Δ+1 and Ĥ is a diff-MDS
code.

B. Selection method for the {Xi,j}

A family of codes leading to a parity check matrix Ĥ with
the property that ddiff(Ĥ) = Δ + 1 (and hence diff-MDS)
can be constructed by choosing for i ∈ {0, · · · , N − 1}, j ∈
{0, · · · ,M − 1},

Xi,j = γiβj (12)

where b is assumed to be a multiple of Δ, βj ∈ GF (2b/Δ),
γi ∈ GF (2b), and where the following holds:

1) If one chooses any subset from {β0, · · · , βM−1} with
cardinality Δ

′

, the elements of this subset are linearly

independent over GF (2), where Δ
′

= Δ if Δ is even,
otherwise Δ

′

= Δ+ 1.
2) If one chooses any subset from {γ0, · · · , γN−1} with

cardinality Δ, the elements of this subset are linearly
independent over GF (2b/Δ).

In general, one may have to make b sufficiently large to satisfy
these requirements. In an alternate method, βj ∈ GF (2b),
γi ∈ GF (2b/Δ), and the following holds:

1) If one chooses any subset from {γ0, · · · , γN−1} with
cardinality Δ, the elements of this subset are linearly
independent over GF (2).

2) If one chooses any subset from {β0, · · · , βM−1} with
cardinality Δ+1, the elements of this subset are linearly
independent over GF (2b/Δ).

The proof of correctness of the latter is similar to the former
option and hence it is omitted.

We now prove that ddiff(Ĥ) = Δ + 1 if the conditions
for the case βj ∈ GF (2b/Δ), γi ∈ GF (2b) are satisfied.
Clearly, ddiff(Ĥ) ≤ Δ+ 1. We wish to show that for all j ∈
{0, · · · ,M − 1}, minj∈{0,··· ,M−1} d(B

(−j)) ≥ Δ+ 1 where
we emphasize that d(B(−j)) denotes a binary minimum Ham-
ming distance. We will demonstrate that the multiplication of
the matrix B(−j) times any nonzero binary vector with length
N(M − 1) and weight no larger than Δ results in a nonzero
vector. This will imply that minj∈{0,··· ,M−1} d(B

(−j)) ≥
Δ+ 1.

Let y(i) ∈ GF (2)N for i ∈ {0, · · · ,M − 1}. We will focus
on the computation

B(−j)
(
y(0) · · ·y(j−1) y(j+1) · · ·y(M−1)

)T
= (13)

∑
i�=j

N−1∑
l=0

[
(Xl,i −Xl,j)y

(i)
l

]
(14)

where in the above y
(i)
l is regarded as an element of GF (2b)

for the purposes of multiplication. The vector we are premul-
tiplying with B(−j) has weight at least 1 and at most Δ. This
matrix/vector product can be rewritten as

∑
i�=j

N−1∑
l=0

[
Xl,iy

(i)
l

]
+

N−1∑
l=0

⎡
⎣Xl,j

⎧⎨
⎩−

∑
i�=j

y
(i)
l

⎫⎬
⎭
⎤
⎦

=

⎡
⎣ ∑
i∈{0,··· ,M−1}

N−1∑
l=0

Xl,iy
(i)
l

⎤
⎦

where similarly the quantity in curly brackets is regarded as
an element of GF (2b) and where we have defined

y
(j)
l

Δ
= −

∑
i�=j

y
(i)
l . (15)

Now we write
M−1∑
i=0

N−1∑
l=0

Xl,iy
(i)
l =

M−1∑
i=0

N−1∑
l=0

γlβiy
(i)
l (16)

=

N−1∑
l=0

γl

(
M−1∑
i=0

βiy
(i)
l

)
Δ
=

N−1∑
l=0

γlηl (17)



Ĥ =

⎛
⎜⎜⎜⎝

X0,0 · · ·XN−1,0 X0,1 · · ·XN−1,1 · · · X0,M−1 · · ·XN−1,M−1

X2
0,0 · · ·X

2
N−1,0 X2

0,1 · · ·X
2
N−1,1 · · · X2

0,M−1 · · ·X
2
N−1,M−1

...
...

...
...

X2Δ−1

0,0 · · ·X2Δ−1

N−1,0 X2Δ−1

0,1 · · ·X2Δ−1

N−1,1 · · · X2Δ−1

0,M−1 · · ·X
2Δ−1

N−1,M−1

⎞
⎟⎟⎟⎠

Ĥ(−0) =

⎛
⎜⎜⎜⎝

X0,1 −X0,0 · · ·XN−1,1 −XN−1,0 · · · X0,M−1 −X0,0 · · ·XN−1,M−1 −XN−1,0

(X0,1 −X0,1)
2 · · · (XN−1,1 −XN−1,0)

2 · · · (X0,M−1 −X0,0)
2 · · · (XN−1,M−1 −XN−1,0)

2

...
...

...
(X0,1 −X0,1)

2Δ−1

· · · (XN−1,1 −XN−1,0)
2Δ−1

· · · (X0,M−1 −X0,0)
2Δ−1

· · · (XN−1,M−1 −XN−1,0)
2Δ−1

⎞
⎟⎟⎟⎠

B(−0) =

⎛
⎜⎜⎜⎝

[X0,1 −X0,0]0 · · · [XN−1,1 −XN−1,0]0 · · · [X0,M−1 −X0,0]0 · · · [XN−1,M−1 −XN−1,0]0
[X0,1 −X0,0]1 · · · [XN−1,1 −XN−1,0]1 · · · [X0,M−1 −X0,0]1 · · · [XN−1,M−1 −XN−1,0]1

...
. . .

...
[X0,1 −X0,0]b−1 · · · [XN−1,1 −XN−1,0]b−1 · · · [X0,M−1 −X0,0]b−1 · · · [XN−1,M−1 −XN−1,0]b−1

⎤
⎥⎥⎥⎦

Perform binary expansion of first row of Ĥ(−0)

Obtain H(−0) (associated with channel 0 failure)

Fig. 2. Example of how a binary code is derived from the original parity check matrix Ĥ , which is assumed to be of the form (10). The (binary) minimum
distance of the binary code shown at the bottom determines the GF (2b) minimum distance of Ĥ(−0) .

Let l be fixed. If y
(i)
l = 1 for any i ∈ {0, · · · ,M − 1}, we

claim that ηl �= 0 and otherwise ηl = 0. The latter is obvious.
To see the former note that there are at most Δ+ 1 elements
of {y(0)

l , · · · ,y
(M−1)
l } that are nonzero. To be more precise,

if Δ is even, then the maximum number of nonzero elements
in this set is actually Δ, because in (15), whenever there is
an even number of nonzero summands in the right hand side,
we have y

(j)
l = 0. On the other hand, if Δ is odd, then the

maximum number of nonzero elements is Δ+1, for a similar
reason.

Since ηl is a linear combination of the {βi} using coeffi-
cients from GF (2), due to the linear independence property
that we assume of the {βi} we conclude that ηl �= 0 if
y
(i)
l = 1 for any i ∈ {0, · · · ,M − 1}, as desired. Finally

note that |{l ∈ {0, · · · , N − 1} : ηl �= 0}| ≤ Δ since there
are at most Δ nonzero values in the {y(i)}i�=j collectively.
Note also that ηl ∈ GF (2b/Δ). Thus in (17), we are mixing
the {γl} using at most Δ elements of GF (2b/Δ) and by the
assumptions on the {γl}, the result of the combination must
be nonzero, since at least one of the ηl is nonzero. This proves
that d(B(−j)) ≥ Δ+ 1 as desired.

VI. A COMPARISON TO REED-SOLOMON CODES

As discussed in the Preliminaries, Reed-Solomon codes
may be considered for the memory array storage problem
considered in this article; in here H would no longer have
the form (1) and instead would be the parity check matrix
of a Reed-Solomon code. The main difficulty that arises in
their application to the main memory of a server relates to

the extraordinarily high bandwidth, low decoding latencies and
small chip area footprint that this setting demands. A complete
discussion of this topic is well beyond the scope of this
paper and thus will be presented in a subsequent publication,
nonetheless we will offer here some of the basic arguments.

First, we point out that if NM < 2b, then a (generally
shortened) Reed-Solomon code exists that is at least as strong
as a diff-MDS code (in here of course we are also assuming
the existence of the latter). For example, if one employs a
general decoder organization similar to that in the proof of
Theorem 1, then one can prove an analogous result in which
we substitute (3,4,5,6,7) with

u+ t(0,u)c + t
(0,u)
d < N +Δ+ 1 (18)

u+ t
(0,u)
d < Δ+ 1 (19)

u+ t(1,u)c + t
(1,u)
d < Δ+ 1 (20)

N ≥ Δ (21)

p(0,u)c ≥ 1−
M − 1

2b(Δ−u)
. (22)

We now turn to decoding complexity; in what follows
all operations discussed are in GF (2b) unless stated other-
wise. In both diff-MDS and Reed-Solomon codes we start
by computing the syndromes of the retrieved vector. It is
easy to see that the z syndrome can be computed using
N(M − 1) addition operations and that the s syndrome
can be computed using approximately (and at most) ΔNM
additions and multiplications, where the multiplications have
one of its operands known at code design time. Syndrome



computation in Reed-Solomon codes can be accomplished
using the obvious technique using approximately (N+Δ)NM
additions and multiplications again with one of the operands
of the latter being known at design time. Nonetheless, in some
instances we can exploit techniques originally developed for
the field of complex numbers [16] and argue that this operation
can be accomplished using O(NM log2NM) operations; see
[17] and its references for an early example of this idea.
We note that these techniques rely on the ability to compute
efficiently an interpolating polynomial and on the existence of
a Fast Fourier Transform. Efficient methods for solving these
in finite fields can be derived from algorithms in complex
fields, nonetheless the finite field setting places restrictions on
the block lengths and fields for which such efficient operations
are known to exist; in particular, 2b − 1 should preferably
have many factors. Note that in order to obtain a conservative
estimate of the relative computational complexity advantages
of diff-MDS codes over Reed-Solomon codes we are not
considering any benefits that our proposed diff-MDS codes
can derive from exploiting the algebraic structure given by
(10) and/or (12).

From this discussion it is clear that if NM is large with
respect to Δ, then the complexity of computing syndromes
for expurgated simple parity check codes can be much lower
than that of Reed-Solomon codes. This is not very surprising,
since Δ relatively “small” means that most of the errors that
one will be solving for are “large” column errors and Reed-
Solomon codes are not specifically designed for this setting
while expurgated simple parity check codes are. Moreover,
in specific problem instances, efficient “super-fast” algorithms
cited above may not be known, since the associated complexity
estimates are asymptotic, further magnifying the computa-
tional advantage of diff-MDS codes.

Assuming that the problem is simply to find the error
magnitude of a channel that has been marked and no chip
marked and no additional error, then it is easy to see that in the
case of an expurgated simple parity check code, the syndrome
z is the channel error magnitude. To achieve the corresponding
with a Reed-Solomon code, one needs to decode N erasures.
A standard way of doing this is by solving an N ×N system
of V e = s where V is a Vandermonde matrix and s is
a vector with N syndromes of the Reed-Solomon code. It
is well known that this system of equations can be using
O(N2) multiplications and additions in GF (2b). As before,
by using more advanced techniques [16] the complexity of
these computations may be improved, in some instances,
to O(N log2N), but it can certainly not be reduced to no
computation at all which is what it is competing against.

The setting that we have presented in this paper goes well
beyond the simple example given above, and therefore a
complete assessment of the relative computational complexity
advantages that we are suggesting requires a painstaking
methodology in which optimized, complete decoders for both
settings are presented. As stated earlier, this is beyond the
scope of our article.

VII. APPENDIX

Proof of Lemma 1. The upper bound in the lemma
is proved by finding a vector ξ with w(ξ) = �(Δ +
1)/(1 − M−1)� such that Hξ = 0. Arrange the symbols of
ξ(0), · · · , ξ(M−2), each an element of GF (2b), in a grid as
follows: ⎛

⎜⎜⎜⎜⎝
ξ
(0)
0 ξ

(1)
0 · · · ξ

(M−2)
0

ξ
(0)
1 ξ

(1)
1 · · · ξ

(M−2)
1

...
...

...
...

ξ
(0)
N−1 ξ

(1)
N−1 · · · ξ

(M−2)
N−1

⎞
⎟⎟⎟⎟⎠ .

This arrangement is in agreement with the the first M − 1
columns of Table I; the last column will be added shortly.
We select Δ+ 1 entries from the grid above to be allowed to
contain nonzero values; the rest of the entries in the grid will
have zero values. The entries are chosen so as to include as
many whole rows as possible. One selection mechanism starts
from the top, left corner, and progresses to the right, selecting
entries towards the maximum count of Δ+1. If the maximum
is not reached, then entries from the second row are chosen
starting from the leftmost, etc.

The total number of rows containing at least one chosen
entry is �(Δ+1)/(M−1)�. Since Ĥ(−(M−1)) has Δ rows, one
can always find an assignment for the Δ+ 1 entries selected
so that Ĥ(−(M−1))ξ{−(M−1)} = 0. Now define

ξ(M−1) = −

M−2∑
j=0

ξ(j). (23)

Due to our selection mechanism, it s clear that w(ξ) ≤ Δ+
1 + �(Δ + 1)/(M − 1)� = �(Δ + 1)/(1− 1/M)�. Note that

0 =

M−2∑
j=0

(
Ĥ(j) − Ĥ(−(M−1))

)
ξ(j) = Ĥξ.

This together with (23), implies that Hξ = 0, finalizing
the proof of the upper bound. We now turn our attention
to the lower found. If ξ �= 0 and Hξ = 0 then for every
i ∈ {0, · · · ,M − 1},

Ĥ(−i)ξ{−i} = 0, ξ{−i} �= 0.

The latter holds because if there is a unique j such that ξ(j) �=
0 then necessarily Hξ �= 0, contradicting the original assump-
tion. This immediately implies that w(ξ{−i}) ≥ d(Ĥ(−i)).
Since w(ξ) = w(ξ(i)) + w(ξ{−i}) then we obtain

d(H) ≥ min
ξ �=0:Hξ=0

w(ξ)

≥ min
ξ �=0:Hξ=0

max
0≤i≤M−1

(
w(ξ(i)) + d(Ĥ(−i))

)
≥ min

0≤i≤M−1
d(Ĥ(−i)) + min

ξ �=0:Hξ=0
max

0≤i≤M−1
w(ξ(i))

≥ min
0≤i≤M−1

d(Ĥ(−i)) + �d(H)/M�

≥ min
0≤i≤M−1

d(Ĥ(−i)) + d(H)/M.



From the above, d(H) ≥ ddiff(Ĥ)/(1 − M−1). Since the
minimum distance is integer valued, we can take the ceiling,
obtaining the lower bound in the lemma.
Proof of Lemma 2. Let {j0, · · · , ju−1} be the erasure

locations passed to the decoder g. As it is well known, in
order to solve for u erasures, the decoder g computes the
syndrome s by multiplying the matrix A times the retrieved
vector, extracts the u columns of A corresponding to the u
erasures and solves the linear system [Aj0Aj1 · · ·Aju−1 ]v = s

for the vector v, which will contain the error magnitudes. This
can be accomplished because by assumption, the u columns
of the matrix above are linearly independent. Note that for any
given choice of {j0, · · · , ju−1}, there are exactly 2ub distinct
possible values for s that must be mapped to distinct error
magnitudes. Let these “correctable” syndromes be denoted
by Cj0,··· ,ju−1 . The decoder will claim an uncorrectable error
whenever the calculated syndrome s is not in Cj0,··· ,ju−1 , and
otherwise will claim a correctable error.

For the remainder of the proof, let s = A(x + e) with x

and e defined as in the lemma statement. Since any d(A)− 1
columns of the matrix A are linearly independent, there
must be d(A) − 1 rows of the matrix [Ai0Ai1 · · ·Aid(A)−2

]
that are linearly independent. Let the indices of these rows
be {h0, · · · , hd(A)−2}. Extracting these rows results in an
invertible square matrix M . Note that the vector

ξ = M
(
ei0 ei1 · · · eid(A)−2

)T
(24)

is, statistically speaking, a vector chosen uniformly at random
from GF (2b)NM . The reason for this is that the right hand
side has this property, and M is an invertible matrix. The
syndrome s, when subsampled at the same rows, can be written
as: s{h0,··· ,hd(A)−2} = ξ + χ for some vector χ. The vector
χ, which in general can have both random and deterministic
entries, is statistically independent from ξ. The reason is that
any random component of χ depends on elements of e not
in the list {ei0 , · · · , eid(A)−2

}, and all the entries of e are
independent. As a result, s{h0,··· ,hd(A)−2} is also a vector
chosen uniformly at random from GF (2b)NM . Through a
similar reasoning, we can see that the vector s{h0,··· ,hd(A)−2}

is statistically independent of the vector s{h0,··· ,hd(A)−2}c

where the complement is taken with respect to the index set
{0, · · · , r − 1}. As a consequence of this, if z ∈ GF (2b)NM

is any given deterministic vector, we have that

P (s = z) ≤
1

2b(d(A)−1)
.

Finally note that for any given erasure locations
{j0, · · · , ju−1} the set of correctable syndromes Cj0,··· ,ju−1

has cardinality exactly 2bu. Our decoder miscorrects whenever
Ae ∈ Cj0,··· ,ju−1 and thus the miscorrection probability must
satisfy

P
(
s ∈ Cj0,··· ,ju−1

)
≤

1

2b(d(A)−u−1)
.

This finishes the proof of the lemma.
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