US008549378B2

a2z United States Patent (10) Patent No.: US 8,549,378 B2
Alves et al. (45) Date of Patent: Oct. 1, 2013
(54) RAIM SYSTEM USING DECODING OF ?jg?gg? : 1(1); }ggg gaSkinS
488, uoco
VIRTUAL ECC 5,499,253 A 3/1996 Lary
. . 5,513,135 A 4/1996 Dell et al.
(75) Inventors: Luiz C. Alves, Hopewell Junction, NY 5,537,665 A 7/1996 Patel et al.
(US); Luis A. Lastras-Montano, 5,574,945 A 11/1996 Elko et al.
Cortlandt Manor, NY (US); Patrick J. 2’255;(5)’(5)246; ﬁ 1(§; igg; gin}u_ra etal.
; . ,680, ivivier
Meaney, Poughkecpsie, NY (US); Eldee 5684810 A 11/1997 Nakamura et al.
Stephens, Waterbury, CT. (US); Barry 6.012.839 A 12000 Nguyen
M. Trager, Yorktown Heights, NY (US) 6,125469 A 9/2000 Zook et al.
6,131,178 A 10/2000 Fujita et al.
(73) Assignee: Internati(?nal Business Machines (Continued)
Corporation, Armonk, NY (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this 1P 11144491 A2 5/1999
patent is extended or adjusted under 35 WO 2006029243 Al 3/2006
U.S.C. 154(b) by 427 days. WO WO 2006/029243 *3/2006
OTHER PUBLICATIONS
(21) Appl. No.: 12/822,469
D. Wortzman; “Two-Tier Error Correcting Code for Memories”; vol.
(22) Filed: Jun. 24, 2010 26, #10, pp. 5314-5318; Mar. 1984.
(65) Prior Publication Data (Continued)
US 2011/0320918 Al Dec. 29, 2011 Primary Examiner — John Trimmings
(74) Attorney, Agent, or Firm — Cantor Colburn LLP
(51) Imt.CL
G11C 29/00 (2006.01) (57) ABSTRACT
(52) US.CL . 714/785: 770: o Error correction and detection in a redundant memory system
USPC ..c....ee.) 714/ 763j 714 785’.714 770; 714’ 800f including a a computer implemented method that includes
714/804; 714/ 80/7’ 714/ 6'/22 ’ 714;6'24} 714// 25; receiving data including error correction code (ECC) bits, the
. . 7.14 42;714/48; 711/154; 711/114 receiving from a plurality of channels, each channel compris-
(58) Field of Classification Search ing a plurality of memory devices at memory device loca-
None) tions. The method also includes computing syndromes of the
See application file for complete search history. data; receiving a channel identifier of one of the channels; and
. removing a contribution of data received on the channel from
(56) References Cited

U.S. PATENT DOCUMENTS

4,464,747 A 8/1984 Groudan et al.
4,817,091 A 3/1989 Katzman et al.
4,996,687 A 2/1991 Hess et al.
5,124,948 A 6/1992 Takizawa et al.
5,163,023 A 11/1992 Ferris et al.
5,272,671 A 12/1993 Kudo

|

the computed syndromes, the removing resulting in channel
adjusted syndromes. The channel adjusted syndromes are
decoded resulting in channel adjusted memory device loca-
tions of failing memory devices, the channel adjusted
memory device locations corresponding to memory device
locations.

21 Claims, 9 Drawing Sheets

CHIP MARKS CHANNEL
XANDY MARK

GHANNEL ADJUSTED

602:
SYADRDME RENERATIDN

GEWERATION 620
OF GHANNEL
ADJUSTED MARKS

Z s s s g
B, 8 B8, 98, B8

Izl
[

604 GHIP MARK AND CHANNEL ADJUSTED
SYNDRDME GENERATIDH

{ s(ﬂ};.;,,
568

8

g(-z)l 36

SYNDROME AND MARK
SELECTOR

0
j« ger] g Fein e
48, 8, 4B,

US 8,549,378 B2

Page 2
(56) References Cited 2008/0005644 Al 1/2008 Dell
2008/0010435 Al 1/2008 Smith et al.
2008/0046792 Al 2/2008 Yamamoto et al.
U.S. PATENT DOCUMENTS 2008/0046796 Al 2/2008 Dell et al.

6,332,206 Bl 12/2001 Nakatsuji et al. 2008/0163385 Al 7/2008 Mahmoud

6,381,685 B2 4/2002 Dell et al. 2008/0168329 Al 7/2008 Han

6,418,068 Bl 7/2002 Raynham 2008/0222449 Al 9/2008 Ramgarajan et al.

6,442,726 Bl 8/2002 Knefel 2008/0250270 Al 10/2008 Bennett

6,715,116 B2 3/2004 Lester et al. 2008/0266999 Al 10/2008 Thayer

6,763,444 B2 7/2004 Thomann 2008/0285449 Al 11/2008 Larsson et al.

6,820,072 Bl 11/2004 Skaanning et al. 2008/0313241 Al 12/2008 Lietal.

6,845,472 B2 1/2005 Walker 2009/0006886 Al 1/2009 O’Connor

6,854,070 B2 2/2005 Johnson et al. 2009/0006900 Al 1/2009 Lastras-Montano

6,973,612 Bl 12/2005 Rodi 2009/0024902 Al* 1/2009 Joetal.cocovvrenrnnn.. 714/763

6,976,194 B2 12/2005 Cypher 2009/0049365 Al 2/2009 Kim et al.

6,981,205 B2 12/2005 Fukushima et al. 2009/0106491 Al 4/2009 Piszczek et al.

6,988,219 B2 1/2006 Hitz et al. 2009/0164715 Al 6/2009 Astigarraga et al.

7,055,054 B2 5/2006 Olarig 2009/0193315 Al 7/2009 Gower et al.

7,099,994 B2 8/2006 Thayer et al. 2009/0228648 Al 9/2009 Wack

7,149,269 B2 12/2006 Cranford, Jr. et al. 2009/0287890 Al 11/2009 Bolosky

7,149,945 B2 12/2006 Brueggen 2010/0005281 Al 1/2010 Buchmann et al.

7,191,257 B2 3/2007 Ali Khan et al. 2010/0005345 Al 1/2010 Ferraiolo et al.

7,200,780 B2 4/2007 Kushida 2010/0082066 Al 4/2010 Biyani

7,278,086 B2 10/2007 Banks et al. 2010/0107148 Al 4/2010 Decker et al.

7,313,749 B2 12/2007 Nerl et al. 2010/0162033 Al 6/2010 Ahn et al.

7,320,086 B2 1/2008 Majni et al. 2010/0205367 Al 8/2010 Ehrlich et al.

7,353,316 B2 4/2008 FErdmann 2010/0241899 Al 9/2010 Mayer et al.

7,409,581 B2 8/2008 Santeler et al. 2010/0293532 Al 11/2010 Andrade et al.

7,467,126 B2 12/2008 Smith et al. 2010/0306489 Al 12/2010 Abts et al.

7,484,138 B2 1/2009 Hsieh et al. 2010/0306574 Al 12/2010 Suzuki et al.

7,752,490 B2 7/2010 Abe 2011/0051854 Al* 3/2011 Kizeretal. 375/340

8,041,990 B2 10/2011 O’Connor et al. 714/6.22 2011/0075782 Al 3/2011 Zhang et al.

8,046,628 B2 10/2011 Resnick 2011/0078496 Al* 3/2011 Jeddelohc....... 714/6.24
2002/0181633 A1 12/2002 Trans 2011/0126079 Al* 5/2011 Wuetalccoovvennne. 714/763
2003/0002358 Al 1/2003 Leeetal. 2011/0173162 Al 7/2011 Anderson et al.

2003/0023930 Al 1/2003 Fujiwara et al. 2011/0320869 Al 12/2011 Gower et al.

2003/0208704 Al 11/2003 Bartels et al. 2011/0320881 Al 12/2011 Dodson et al.

2004/0034818 Al 2/2004 Gross et al. 2011/0320914 Al 12/2011 Alves et al.

2004/0093472 Al 5/2004 Dahlen et al.

2004/0123223 Al 6/2004 Halford OTHER PUBLICATIONS

gggjigég%gé ﬁ} 1?@883 Eu:t:to al. The RAIDBook—A Source Book for RAID Technology by the
2005/0108594 Al 5/2005 Menon et al. RAID Advisory Board; Lino Lakes; MN; Jun. 9, 1993;
2005/0204264 Al 9/2005 Yusa XP002928115.

2006/0156190 Al 7/2006 Finkelstein etal. 714/763 L.A. Lastras-Montano; “A new class of array codes for memory
2006/0244827 Al 11/2006 Moya storage”; Version—Jan. 19, 2011.

2006/0248406 A1 11/2006 Qing et al. System Z GF (65536) x8 RAIM Code—Mar. 12, 2010, pp. 1-22.
2006/0282745 Al 12/2006 Joseph etal. Chen, P. M, et al.; “RAID: High Performance, Reliable Secondary
2007/0011562 Al 172007 Alexander et al. Storage”; ACM Computing Surveys; ACM, New York, NY, US vol.
2007/0033195 Al 2/2007 Stange etal. 26, No. 2, Jun. 1, 1994, pp. 145-185,

2007/0047344 Al 3/2007 Thayer et al. EP Application No. 08760760.2 Examination Report dated Jun. 10
2007/0047436 Al 3/2007 Arai et al. 501 0"5 : ' p S
2007/0050688 Al 3/2007 Thayer » / pages. o

2007/0089035 Al 4/2007 Alexander et al. EP Application No. 08760760.2 Examination Report dated Jul. 23,
2007/0101094 Al 5/2007 Thayer et al. 2012, 7 pages.

2007/0150792 Al 6/2007 Ruckerbauer 714/763 International Search Report and Written Opinion for PCT/EP2008/
2007/0192667 Al 82007 Nieto et al. 057199 dated Mar. 23, 2009, 10 pages.

2007/0201595 Al 8/2007 Stimple et al. International Search Report and Written Opinion for PCT/EP2011/
2007/0217559 Al 9/2007 Stott et al. 058924 dated Nov. 9, 2011. 9 pages.

2007/0260623 Al 11/2007 Jaquette et al.

2007/0286199 Al 12/2007 Coteus et al. * cited by examiner

U.S. Patent Oct. 1, 2013 Sheet 1 of 9 US 8,549,378 B2
CONTROLLER /
176
) 104
112 [176 7" oownsen |
DECODER < P STREAM
R 108
1;)6
102 102
/ /
106 106
/ DIMM [DIMM
GASCADE 0 GASCADE 1

FIG. 1

U.S. Patent Oct. 1, 2013 Sheet 2 of 9 US 8,549,378 B2

MARKING STATE | CHIP MARKX CHIP MARKY | CHANNEL MARK
A
B v
c v v
D v
E v v
F v v v

FIG. 2

US 8,549,378 B2

Sheet 3 of 9

Oct. 1, 2013

U.S. Patent

()30 ()30 n n 1 TEL A N A]
()20 n 1 n 1 TEL A N]
()20 n 1 n 1 TEL A a
()39 n 1 n 1 TEL A A 9
()39 n 1 n 1 TEL A g
()39 n 1 n 1 TEL ¥
(Lig 718n00 | (LG T19NIS (SdIH9
TIRNE| 100) 10N) JLY4Yd3S) A X
TINNYH) IR yowyading | wowwaug | wowwaug | wowws YUY WY YUY 1YL

MaN TIGN00MIN | TIONISMIN | T1Gn0aMIN | TIONISMIN | MINON | TINNYHO | dIHO dIH) | DNV

US 8,549,378 B2

Sheet 4 of 9

Oct. 1, 2013

U.S. Patent

vy O1d

(3N an Nds A A YA i

an an Nds A N 1

an an Nds VA a

NdS/AN Nds/AN Nds A A J

NdS/AN Nds/AN Nds N g

Nds/AN NdS/N NdS ¥

p/{€-0} STINNYHY | #/{€-0} STINNYHD
(118 T19NIS LON) A X
40443 dIH) 4oy¥3 114 40443 YT U WY 0Y1S

T19NIS MIN T19NIS MIN MINON | TINNVHO dIH9 dIH) ONIYYI

US 8,549,378 B2

Sheet 5 0of 9

Oct. 1, 2013

U.S. Patent

S OIHd
Aﬁv_ﬁ_\:_ag 0l
90S
YUYW ding B3 6
Tty | D DO B D
O | 7]]] Ol | ¢
SNOILYI0T INDRY 7 O 0 O 0|
7]]]]| ¢
A]]] O] | v
]] [] [] 1| ¢
suig vva] 7%]] []]| ¢
s11g ¥93H) 03401 [%]]] O] |
$118 I3 ALIYvd [% B3 % o oo
b E Z _ 0
TINNYHI
erm

S ~~20¢

U.S. Patent Oct. 1, 2013 Sheet 6 of 9 US 8,549,378 B2

CHIP MARKS CHANNEL
308 X AND ¥ MARK
602~ CHANNEL ADJUSTED gENGEHRL{‘,m]E'E 1620

SYNDROME GENERATION ADIUSTED HARKS
7l s s s@f g s

128 88 8B 8B iB 88
604~ CHIP MARK AND CHANNEL ADJUSTED
SYNDROME GENERATION
{seirt] s sl s s s
6B 4B 4B 4B 4B 4B
SYNDROME AND MARK
I SELECTOR
606—"
i §E| gt Xein,Yei®)
4B 4B 4B
SYNDROME
R DEGODER
608—
r e & ¢
8| 2) 28
BIT FLIP MASK GENERATION
FLAGS GENERATION
610—T
BIT FLIP MASK FLAGS

FIG. 6

U.S. Patent Oct. 1, 2013 Sheet 7 of 9 US 8,549,378 B2

VALID LOCATION NEW VALUE FOR e, NEW VALUE FOR),
r=r By —~6y &y =8y
r—r D x.jx ex—ex D x.i¥ ey =ty
r=r Dy Bx —6x ey—=ey Dr(i%
r=r @ xin @y ex—=ex D% ey =ey Dr(iv)
TABLE IV

FIG. 7

U.S. Patent

Oct. 1, 2013

Sheet 8 of 9

US 8,549,378 B2

CHANNEL (k)

CHIP (j)

X j(gby-..y5)

CHECK (e)
DATA (o)

1000000000000000
1000001011000011
1000110010101111
1000001111110001
1000110110010011
1000101001000101
1000010100011111
1000111001101000
1000011111010001

0100000000000000
0100000101101101
0100011001011011
0100110110111100
0100101010001101
0100010100101110
0100111011001011
0100011100110100
0100111110101100

0010000000000000
0010110000111010
0010001111101001
0010101010010110
0010010101001010
0010111000010111
0010011101101001
0010111111010010
0010101101010110

0001000000000000
0001011011010101
0001110101111000
0001010110000011
0001111000100101
0001011111001111
0001111100111000
0001101110100001
0001100111100011

SRR WMGWWWWLWWWWWIdNDNNY NN Y NN NN e e e e e e —— OO O OO OoOoOOoOO S

co~ohonfaodh—o o~ 0odhd—o | oo~ awoh—o|lco~~Oh Mmoo — o |co~IOh T aWoMh —moO

1111000000000000
1111100101000001
1111010001100101
1111000101011000
1111110001110001
1111011010110011
1111001110000101
1111110100101111
1111101011001000

® ® & & & & O 9 6|0 0000000 GW|0 0000000 |00 000 OO0 M|00O00O0o0oOOe

TABLE YV

FIG. 8

US 8,549,378 B2

Sheet 9 of 9

Oct. 1, 2013

U.S. Patent

L0a 600 €0a 100

900 00 oa 00a
(9199 | 6q [va | €29 (1909
G619 | y10 | €LG [219 | 110] 010 | 69 [80

Y114vNo 181

YIL4¥ND ONT

YIL4YND OYE

YIL4VND HLY

US 8,549,378 B2

1
RAIM SYSTEM USING DECODING OF
VIRTUAL ECC

BACKGROUND

This invention relates generally to computer memory and
more particularly, to error detection and correction in a redun-
dant memory system.

Memory device densities have continued to grow as com-
puter systems have become more powerful. With the increase
in density comes an increased probability of encountering a
memory failure during normal system operations. Techniques
to detect and correct bit errors have evolved into an elaborate
science over the past several decades. Perhaps the most basic
detection technique is the generation of odd or even parity
where the number of 1°s or 0’s in a data word are “exclusive
or-ed” (XOR-ed) together to produce a parity bit. If there is a
single error present in the data word during a read operation,
it can be detected by regenerating parity from the data and
then checking to see that it matches the stored (originally
generated) parity.

Richard Hamming recognized that the parity technique
could be extended to not only detect errors, but to also correct
errors by appending an XOR field, an error correction code
(ECC) field, to each data, or code, word. The ECC field is a
combination of different bits in the word XOR-ed together so
that some number of errors can be detected, pinpointed, and
corrected. The number of errors that can be detected, pin-
pointed, and corrected is related to the length of the ECC field
appended to the data word. ECC techniques have been used to
improve availability of storage systems by correcting
memory device (e.g., dynamic random access memory or
“DRAM?”) failures so that customers do not experience data
loss or data integrity issues due to failure of a memory device.

Redundant array of independent memory (RAIM) systems
have been developed to improve performance and/or to
increase the availability of storage systems. RAIM distributes
data across several independent memory modules (each
memory module contains one or more memory devices).
There are many different RAIM schemes that have been
developed each having different characteristics, and different
pros and cons associated with them. Performance, availabil-
ity, and utilization/efficiency (the percentage of the disks that
actually hold customer data) are perhaps the most important.
The tradeoffs associated with various schemes have to be
carefully considered because improvements in one attribute
can often result in reductions in another.

SUMMARY

An embodiment is a computer implemented method that
includes receiving data including error correction code
(ECC) bits, the receiving from a plurality of channels, each
channel comprising a plurality of memory devices at memory
device locations. The method also includes computing syn-
dromes of the data; receiving a channel identifier of one of the
channels; and removing a contribution of data received on the
channel from the computed syndromes, the removing result-
ing in channel adjusted syndromes. The channel adjusted
syndromes are decoded resulting in channel adjusted memory
device locations of failing memory devices, the channel
adjusted memory device locations corresponding to memory
device locations.

Another embodiment is a system that includes a plurality
of channels, each channel including a plurality of memory
devices at memory device locations; and a decoder in com-
munication with the channels, the decoder configured for

10

15

20

25

30

35

40

45

50

55

60

65

2

performing a method. The method includes method that
includes receiving data including ECC bits, the receiving
from the channels. The method also includes computing syn-
dromes of the data; receiving a channel identifier of one ofthe
channels; and removing a contribution of data received on the
channel from the computed syndromes, the removing result-
ing in channel adjusted syndromes. The channel adjusted
syndromes are decoded resulting in channel adjusted memory
device locations of failing memory devices, the channel
adjusted memory device locations corresponding to memory
device locations.

A further embodiment is a computer program product
including a tangible storage medium readable by a processing
circuit and storing instructions for execution by the process-
ing circuit for performing a method. The method includes
receiving data including ECC bits, the receiving from a plu-
rality of channels, each channel comprising a plurality of
memory devices at memory device locations. The method
also includes computing syndromes of the data; receiving a
channel identifier of one of the channels; and removing a
contribution of data received on the channel from the com-
puted syndromes, the removing resulting in channel adjusted
syndromes. The channel adjusted syndromes are decoded
resulting in channel adjusted memory device locations of
failing memory devices, the channel adjusted memory device
locations corresponding to memory device locations.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Referring now to the drawings wherein like elements are
numbered alike in the several FIGURES:

FIG. 1 is a block diagram of a cascaded interconnect
memory system that may be implemented by an exemplary
embodiment;

FIG. 2 depicts a table that defines the marking states for a
RAIM code in accordance with an embodiment;

FIG. 3 depicts a table that summarizes the capabilities of
the RAIM code in accordance with an embodiment;

FIG. 4 depicts a table that summarizes the capabilities of
the RAIM code in the presence of an injected SPUE in accor-
dance with an embodiment;

FIG. 5 illustrates an embodiment of the logical placement
of symbols of an ECC code;

FIG. 6 depicts a process flow of a decoder in accordance
with an embodiment;

FIG. 7 depicts a table that summaries updates that need to
be performed to various variables according an exemplary
embodiments;

FIG. 8 depicts a table that includes a binary pattern corre-
sponding to each symbol in an embodiment of the RAIM
code; and

FIG. 9 depicts an error control code symbol definition
according to an embodiment.

DETAILED DESCRIPTION

An embodiment provides an implementation efficient error
control coding system that allows a memory to sustain a
combination of known memory device failures, a channel
failure, as well as additional corrections. An embodiment of
an algorithm described herein is able to detect and correct a
failing channel even in the presence of known chip failures
without any external aid to locate the failing channel. An
embodiment provides a general framework for the design ofa
new class of efficient coding algorithms that may be applied
to a variety of memory system architectures. An embodiment

US 8,549,378 B2

3

described herein provides lower complexity of implementa-
tion, a more regular placement for redundant checks through-
out a channel, and no loss of strength in error correction and
detection coverage as compared to Reed-Solomon codes.

As in many redundant array of independent memory
(RAIM) system designs, an embodiment assumes that one
channel stores the simple parity of the other channels, thus
enabling a simple way of correcting for many errors. Embodi-
ments described herein are concerned with the check bits that
are stored in the other channels and how to design these check
bits. In an embodiment, these check bits are designed to solve
the problem of “error mirroring” which is the phenomenon
that errors outsides a failing channel get replicated into the
failing channel when a simple “exclusive or” (XOR) opera-
tion is used to correct the failing channel, thus increasing the
apparent number of errors in the pattern.

An embodiment described herein provides techniques for
developing parity check matrices, as well as very efficient
encoding and decoding algorithms for codes that have no loss
of'strength with respect to Reed-Solomon codes, yet preserve
the simple parity across the channels and gracefully handle
the problem of error mirroring.

As used herein, the term “memory channel” refers to a
logical entity that is attached to a memory controller and
which connects and communicates to registers, memory buft-
ers and memory devices. Thus, for example, in a cascaded
memory module configuration a memory channel would
comprise the connection means from a memory controller to
a first memory module, the connection means from the first
memory module to a second memory module, and all inter-
mediate memory buffers, etc. As used herein, the term “chan-
nel failure” refers to any event that can result in corrupted data
appearing in the interface of a memory controller to the
memory channel. This failure could be, for example, in a
communication bus (e.g., electrical, and optical) or in a
device that is used as an intermediate medium for buffering
data to be conveyed from memory devices through a commu-
nication bus, such as a memory hub device.

FIG. 1 is a block diagram of a cascade interconnect
memory system that may be implemented by an exemplary
embodiment. The memory system depicted in FIG. 1
includes, multiple independent cascade interconnected
memory interface busses 106 that are logically aggregated
together to operate in unison to support a single independent
access request from a memory controller 110. The servicing
of the single independent access request includes data and
error detection/correction information distributed or
“striped” across the parallel memory interface busses 106 and
associated memory devices located on the memory modules
102.

As shown in the embodiment depicted in FIG. 1, the
memory controller 110 attaches to five narrow/high speed
point-to-point memory interface busses 106, with each
memory interface bus 106 connecting one of five memory
controller interface channels to a cascade interconnect
memory module 102 (or memory subsystem). In an exem-
plary embodiment, each memory module 102 includes at
least one hub device and one or more memory devices. As
used herein, the terms “memory device” and “chip” are used
interchangeably with a chip being a particular implementa-
tion of a memory device. As depicted in FIG. 1, the memory
interface busses 106 operate in unison to support an access
request from the memory controller 110. In an exemplary
embodiment, there may exist a multiplicity of outstanding
fetch and store requests to the multiple cascades in the
memory subsystem.

10

15

20

25

30

35

40

45

50

55

60

65

4

Each memory interface bus 106 in the embodiment
depicted in FIG. 1 includes an upstream bus 108 and a down-
stream bus 104. One of the functions provided by the memory
modules 102 (e.g., a hub device located on the memory mod-
ule 102) is a re-drive function to send signals on the upstream
bus 108 to the memory controller 110 or on the downstream
bus 104 to other memory modules 102. In an exemplary
embodiment, up to two memory modules 102 are cascade
connected to each memory interface bus 106. In an exemplary
embodiment, the memory interface bus 106 is implemented
using differential clock and data signals (i.e., each clock and
data signal requires two wires). In an exemplary embodiment,
the downstream bus 104 includes thirty-two wires to support:
one clock signal, thirteen data/command signals (or bits), one
spare clock lane, and one spare data/command lane. In this
embodiment, each data packet is transferred over the down-
stream bus 104 in twelve beats. In an exemplary embodiment,
the upstream bus 108 includes forty-six wires to support: one
clock signal, twenty data/command signals, one spare clock
lane, and one spare data/command lane. In this embodiment,
each data packet is transferred over the upstream bus 108 in
eight beats.

As used herein, the term “RAIM” refers to redundant
arrays of independent memory modules (e.g., dual in-line
memory modules or “DIMMs). In a RAIM system, if one of
the memory channels fails (e.g, a memory module in the
channel), the redundancy allows the memory system to use
data from one or more of the other memory channels to
reconstruct the data stored on the memory module(s) in the
failing channel. The reconstruction is also referred to as error
correction. As used herein, the terms “RAIM” and “redundant
arrays of independent disk” or “RAID” are used interchange-
ably.

Inanexemplary embodiment, the memory system depicted
in FIG. 1 is a RAIM memory system and the five channels are
lock step channels (i.e., the five memory interface busses 106
are accessed in unison with each other). In an exemplary
embodiment, the RAIM system depicted in FIG. 1 is imple-
mented using the RAIM ECC code described herein which
has the property that one of the channel’s data is the bitwise
XOR of the other four channel’s data with additional check
bits included in order to correct for additional errors. In the
embodiment depicted in FIG. 1, the decoder 112 is located on
the memory controller 110. In embodiments, the decoder 112
is located on the memory modules 102, the memory control-
ler and/or on other hardware/software locations in the
memory system.

As used herein, the term “mark” refers to is an indication
given to an ECC that a particular symbol or set of symbols of
aread word are suspected to be faulty. The ECC can then use
this information to enhance its error correction properties. As
used herein, the term “correctable error” or “CE” refers to an
error that can be corrected while the system is operational,
and thus a CE does not cause a system outage. As used herein,
the term “uncorrectable error” or “UE” refers to an error that
cannot be corrected while the memory system is operational,
and thus correction of a UE causes the memory system to be
off-line for some period of time while the cause of the UE is
being corrected (e.g., by replacing a memory device, by
replacing a memory module, recalibrating and interface).

As used herein, the term “coincident” refers to the occur-
rence of two (or more) error patterns or error conditions that
overlap each other in time. In one example, a CE occurs and
then later in time, before the first CE can be repaired, a second
failure occurs. The first and second failure are said to be
coincident. Repair times are always greater than zero and the
longer the repair time, the more likely it would be to have a

US 8,549,378 B2

5

second failure occur coincident with a the first. Some con-
temporary systems attempt to handle multiple failing devices
by requiring sparing a first device or module. This may
require substantially longer repair times than simply using
marking, as provided by exemplary embodiments described
herein. Before a second failure is identified, exemplary
embodiments provide for immediate correction of a memory
channel failure using marking, thus allowing an additional
correction of a second failure. Once a memory channel failure
is identified, an exemplary embodiment provides correction
of the memory channel failure, up to two marked additional
chips (e.g., memory devices) and a new single bit error. [f the
system has at most one marked memory device together with
the marked channel, then an entire new chip error can be
corrected.

The words “memory channel failure” utilized herein,
includes failures of the communication medium that conveys
the data from the memory modules 102 to the memory con-
troller 110 (i.e., a memory interface bus 106), in addition to
possible memory hub devices and registers.

The ECC code described herein supports incorporating a
special uncorrectable error (SPUE) signature into an encoded
data packet so that in the absence of new errors, and irrespec-
tive of the chip and channel marking state and the errors in the
marked chips/channel, the SPUE is still detectable as a SPUE.
Even if there are a large number of errors on top of the
codeword, the data will still be flagged as a UE. This is
necessary to protect against UE data that has to be stored to
memory to keep soft errors from having that data appear good
(i.e. Clean or CE).

FIG. 2 depicts a table that defines the marking states for a
RAIM code according to the value of the chip marks (x and y)
as well as the channel mark in accordance with an embodi-
ment. A checkmark indicates that the associated mark has a
non-default valid value (i.e., the mark is pointing to a chip/
channel). The absence of a checkmark indicates that the cor-
responding mark is pointing to its default value.

FIG. 3 depicts atable that summarizes the capabilities of an
embodiment of the RAIM code as a function of the marking
state. A ‘(*)” indicates that the channel error is correctable in
all but about 1 ™ of the cases. A ‘(**)” indicates that the UE
flag is raised with extremely high probability.

FIG. 4 depicts atable that summarizes the capabilities of an
embodiment of the RAIM code in the presence of an injected
SPUE. A “(*) indicates that the UE flag is raised with
extremely high probability.

A description of a decoder implemented in accordance
with an embodiment follows.

Regular syndrome generation stage. There two distinct
kinds of syndromes that are associated with an embodiment
of'acode. One is called the Z syndrome which is obtained by
doing a simple XOR of the contents of the five channels:

Z=DyBD,BD,SD,ED,

The other syndrome is called S, and is associated with a parity
check matrix:

H=[H,H H,HH,]

S=H,DyDH,D,DH,D,SH,DBH,D,

This parity check matrix is highly structured and thus the
computation of S admits efficient implementations, as
described herein below. In an embodiment, the quantity S is a
total of 64 bits, logically grouped in four 16-bit (2'°) Galois
Field (GF) elements.

Channel adjusted syndrome generation stage. In an
embodiment, the decoder initially computes five syndromes
{SE9 8D 2 g3 SEDY called the “channel adjusted
syndromes”. Mathematically, S are the syndromes that
would be obtained if the contents of channel i were replaced

10

15

20

25

30

35

40

45

50

55

60

65

6

with the XOR of the contents of the other four channels. The
original syndrome S is 64 bits, and the same is true for S©?,
ie{0, 1, 2, 3, 4}. Since the contents of the ith channel are D,
and Z=D D, BD,PBD,D,, the adjusted content for D, can
be computed as D,DZ.

Thus, mathematically, the definition of an embodiment of
S is as follows:

S = HyDo @ H, Dy @ HyD» ® Hs D3 ® HyDy & H:Z

=S®HZ

It is important to note that channel adjusted syndromes are
computed for all channels i€{0, 1, 2, 3, 4}. A primary reason
behind the design of an embodiment is to be able to have a
total latency for the decoder that is constant across all possible
error pattern instances. In particular, in this manner the
decoder is prepared to correct any possible unknown channel
failure.

Chip and channel adjusted syndrome generation stage. In
an embodiment, this stage is responsible for removing from
each of the syndromes computed in the earlier stage the
contribution of any possible error that is residing in chip
pointed to by x or y. The input signals to the RAIM block x
and y (henceforth called the “chip marks”) are each in one of
two valid generic states: a chip mark can be set to a default
location (different for x and y), or can point to a valid chip
location. It is allowed for one chip mark to point to its default
location and the other one to be pointing to a valid chip
location. The default locations are logically thought to beina
sixth (physically non-existing) channel and in chip positions
9 and 10 of the sixth channel, again these locations physically
non-existing depicts since in an embodiment a channel has
exactly 9 chips associated with it.

FIG. 5 illustrates an embodiment of the logical placement
of symbols of an error control code in a memory system that
includes five channels 504 (e.g., each channel corresponding
to a memory module 102) and nine chips 502 (e.g., memory
devices). As shownin FIG. 5, four of the channels 504 include
stored check bits (e.g., nine sixteen bit symbols) and the fifth
channel is the RAIM channel that contains a simple XOR of
the other four channels. Also shown in FIG. 5 are the two chip
marks 506 which are logically assigned to a sixth (non-exist-
ing) channel on non-existing chips nine and ten.

In an embodiment, the decoder is completely symmetric in
x and y; that is, it is not necessary to use specifically x ory
when there is only one chip being marked. The chip marks
may also be thought of as “soft” (unlike the case of chip
sparing) since there is no actual data movement/changes
when a chip mark is placed, these marks may be removed or
changed to another chip with a simple mark store table update
(in an embodiment the mark store table is not a component
that belongs to the RAIM block). In an embodiment, the
decoder always removes any contribution of errors in chips
pointed to by x and y even if x and/or y are pointing to a
default “parked” location. .

The notation used herein is as follows: S©? denotes the
chip and channel adjusted syndromes for the case in which
channel i is thought to contain the channel error, and these
syndromes are derived from the syndromes S“”. For each
ie{0, 1, 2, 3, 4}, contains exactly four 16-bit GF(2'®) quanti-
ties (same number of bits as in S), whereas the chip and
channel adjusted syndromes {S“"} are each only two 16-bit
quantities. This is explained by the fact that an embodiment
always removes potential errors for exactly two chip loca-
tions, even if one or two of these locations are pointing to their
default value.

US 8,549,378 B2

7

An important special case happens when x or y or both
happen to point at chip(s) that reside on the same channel that
is being adjusted for. The design is such that it is necessary to
avoid “double marking” chip locations. Thus, in an embodi-
ment, the following procedure is performed by the decoder:
while preparing the chip and channel adjusted syndromes for
channel i, it is checked whether x, y or both reside on channel
i. Any chip mark pointing to a chip in channel i is “moved” to
its default location for the purposes of making computations
that assume that channel i is marked. It is important to note
that the “movement” of chip marks is independent for each
channel; all five possible chip mark movements are calculated
and performed in parallel.

One embodiment of this design is that the corrected content
of chips that are marked may in fact be corrected through the
RAIM channel correction mechanism.

Channel adjusted mark generation. In an embodiment, the
externally supplied chip marks %, y need to be suitably modi-
fied for each possible choice for channel mark. One reason
has been mentioned previously: when a chip mark points to a
chip that is contained in a channel that is being marked, this
chip mark needs to be moved to its default position. This is not
the only reason the chip marks need to be adjusted in a per
channel marked basis. The structure of an embodiment of the
this RAIM code, which stores a simple parity in the fifth
channel of the other four channels, gives rise to a phenom-
enon that is termed “error mirroring”.

This is most easily understood by example. Suppose that
the following is received from the five channels:

€
e

€

o o o O

Do, D1®|e|.D2,D3®| €5 |, Dy
€
€

€

o O O O o0

€9

In the above, D, for the original nine 16-bit symbols stored
in channel i for ie€{0, 1, 2, 3, 4} (so that
D,=D,®D @D,PD,), there is a single chip error in channel
one in the fifth chip with an error magnitude e and there is a
channel failure in channel three. If channel three is marked
accordingly, consider what would be obtained if XOR of
channels 0,1, 2 and 4 is calculated and the result is substituted
in channel three:

0 0
0 0
0 0
0 0
Do, D1 ®|e|, Dy, D3 D) e |, Dy
0 0
0 0
0 0
0 0

Note that the chip error with magnitude e has been “mir-
rored” into channel three, in exactly the same row (chip index
within a channel) as the original row (row five in this case). An

10

15

20

25

30

35

40

45

50

55

60

65

8

exemplary embodiment of the decoder Due to reasons that are
beyond the scope of this initial high level description of the
decoder operation it turns out that the correct method for
decoding the remaining error calls for thinking of “channel
adjusted chip positions” instead of regular chip positions, and
thus chip marks need to be channel adjusted for each channel.
Suppose that X, - is the 16-bit Galois Field pattern that is
associated with the chip in channel k, chip j. Then the channel
adjusted chip position of X, ; when channel i* is marked is
given by X; DX, .

Syndrome and mark selector. The architecture of an
embodiment of the decoder is such that internally, a channel
is always chosen to be marked. The index of this channel that
is marked is called i*, which is a numberin {0, 1, 2,3, 4}. This
true even in the case there are no new errors to be solved for
orin the case there is no external channel marked. When there
is no obvious choice for what channel mark to use, the
decoder chooses the fifth channel (i*=4) as the channel mark.

An embodiment of a process followed to do syndrome
selection is described next. When an external channel mark is
given, the decoder will always multiplex the chip and channel
adjusted syndromes corresponding to that channel (it will
also multiplex the channel adjusted syndromes for that chan-
nel as well, as they are needed for the next stage).

When there is no external channel mark placed, the
decoder checks whether there is a unique chip and channel
adjusted syndrome that is exactly equal to zero, since such
“signature” implies that applying that channel mark in con-
junction with potential existing chip marks, would fully
resolve the error. If a unique choice exists, the syndrome
selection circuitry chooses to select such syndrome, which of
course by definition is equal to zero. It also selects the corre-
sponding channel adjusted syndrome, which is general non-
Zero.

If all the chip and channel adjusted syndromes are equal to
Zero:

SEO—GEDGED_ g5

then, the decoder at this moment has learned that no new error
has taken place, beyond any error potentially present in chips
that are marked. In this case, the syndromes corresponding to
the fifth channel (both channel adjusted and chip and channel
adjusted) are selected as a default action.

The final case is when there are at least two distinct chan-
nels i,j with

SN

In this case, the decoder does not have enough information to
decide which is the failing channel and declares an uncorrect-
able error.

Syndrome decoder. In an embodiment, once a choice for
what chip and channel adjusted syndromes to employ has
been made, the decoder proceeds to decode the resulting
syndromes. Throughout this discussion the terminology
“error magnitude” will refer to the bit flip masks that need to
be applied to a chip in order to correct its error.

It is important to note that this stage of the decoder pro-
cesses both the channel adjusted syndromes as well as the
chip and channel adjusted syndromes. The latter are analyzed
first when attempting to find the location and magnitude of a
potential new chip error, and the former are then employed
when computing the error magnitudes of the chips that are
marked.

If the chip and channel adjusted syndrome is zero, no
further errors have been detected and hence all that remains is
to compute the error magnitudes associated with the channel
marked and the chips marked.

US 8,549,378 B2

9

If the chip and channel adjusted syndrome is nonzero, this
implies that there is an error that must be analyzed to see
whether is correctable, and if so, to correct it. In an embodi-
ment this includes two steps. The first step is the computation
of'the error magnitude e and location r of a potential new chip
error. A salient feature of this step is that the location com-
putation procedure entails solving a quartic that due to its
special structure, admits a simplified implementation. The
quartic does result in four possible solutions for r, but the
mathematical properties of the code are such that when there
is anew single chip error, it is guaranteed that only one of the
four possible solutions will correspond to a valid chip loca-
tion. The decoder compares the roots of the quartic against the
possible valid chip locations and eliminates from the list those
roots that are not valid. The second step is the computation of
the error magnitudes e, and e, of the chips pointed to by x and
y. The outcome of this step is self explanatory. It is important
to note though that both e, and e, are computed even if x, or y
or both are pointing to their default location. If x is pointing to
its default location, then e,=0 in the absence of uncorrectable
errors; similarly fory.

Bit flip mask generation and flags generation. In an
embodiment, this is the last stage of decoding. This stage
requires access to €,, €, e and r, as well as the syndrome Z,
among other findings of the decoder. In principle, the follow-
ing prescription results in the desired correction: the bit flip
masks e, e, and e are applied to the chips pointed to x, y and
r, respectively, unless the chip pointed to is not a valid chip
location (for example, a default value for x is not a valid chip
location for x). Then the contents of the channel i* are
replaced with the XOR of the chip corrected contents of the
other 4 channels. It is important to note that in an embodi-
ment, the values of x and y must correspond.

An actual implementation of an embodiment in the
decoder may achieve the above in a different manner, because
the decoder needs to generate an overall bit flip mask for the
data in all five channels that is then applied to the data as a
single last step. In an embodiment, the bit flip mask is gener-
ated as follows. As in the description above, the values of e,
e,, e and x, y, and r are used to generate the bit flip mask
corresponding to “chip corrections”; note that this is one
mask for each of the 4 channels that are not marked (equiva-
lently, that are not assigned the index i*). Then, each of the
masks for the 4 channels is applied to the Z syndrome that is
forwarded to this stage from the initial syndrome generation
stage. The result of this operation becomes the bit flip mask of
the channel that is marked (i*).

Also in this section the decoder computes the uncorrect-
able error flag. There are various invalid conditions that the
decoder checks for in order to form an overall uncorrectable
error flag; it is important to note that it is important to capture
all possible invalid states for the decoder in order to obtain the
maximum amount of protection against potential mis-correc-
tions.

A particular UE condition that is worth singling out due to
its special significance relates to the claim in the last two
columns of the table in FIG. 3 for state F. Note that the table
indicates that single bit errors are correctable whereas double
bit errors are fully detectable. Disallowing corrections of new
errors in state F that have 2 or more bits in error in one 16-bit
symbol, results in any double bit error always be detected.
This property is obtained by a very careful choice of the “chip
indexing” function that is described in a later section of this
document, and has been proved to be true by an exhaustive
computer manipulation of the parity check matrix of the code.

No external channel mark. In this case, an embodiment of
the decoder is responsible for correcting up to two chip
marks, and an unknown chip error or channel error. An impor-
tant consideration is the decoder, in this mode, internally
treats unknown chip errors as channel errors, and corrects

20

30

45

10

them accordingly. In this setting, the syndromes obtained in
the “syndrome selection” stage described above are equal to
zero, and therefore the circuits under “syndrome decoder”
that look for new errors do not find any. This design stems
from the fact that the decoder does not make a distinction on
the number of errors present in a channel when it detects a
channel error.

External channel mark specified. In contrast to the no exter-
nal channel mark situation, in this mode new chip errors result
in a nonzero chip and channel adjusted syndrome selected in
the “syndrome and mark selector”. Thus, new errors are
resolved using the “syndrome decoder” stage. This remark
together with the previous one implies that the mechanisms
for correcting new single chip errors differ according to
whether there is an external channel mark or not.

FIG. 6 depicts a summary of the process flow described
above and implemented by an embodiment of the decoder. In
an embodiment that utilizes a double data rate three (DDR3)
device, a sixteen bit symbol is received over two transfers. In
an embodiment, the RAIM code is applied four times across
the burst of 8 in each DRAM, each processing 64 bytes (B)
worth of data for a total of 256 B. Input to the process includes
data from the 5 channels, the chip marks and the channel
mark. At block 602, channel adjusted syndrome generation is
performed and at block 620 channel adjust marks are gener-
ated. At block 604, chip mark and channel adjust syndrome
generation is performed, and at block 606, syndrome and
mark selection are performed. At block 608, syndrome
decoding is performed and at block 610, bit flip masks and
flags are generated and output.

The following section describes Galois field arithmetic that
is implemented by an embodiment. In an embodiment:
GF(16) elements are polynomials of degree less than 4 in the
variable u, where operations are done modulo 1+u+u®;
GF(256) elements are polynomials of degree less than 2 in the
variable v, with operations done modulo 1+u*+v+v?; and
GF(65536) elements are polynomials of degree less than 2 in
the variable z, with operations done modulo (u*+u®)v+z+7°.
As described herein, the convention followed is that the bit
patternbgb, ...b, b5, whichis ordered in agreement with the
manner in which VHDL (“very high speed integrated circuit
hardware description language”) orders bits denotes the
GF(65536) element:

[(Bo+b by +b 3>)+ (b 4+ b su+b P+ W] +[(bt
bott+b 12413+ (b o+b 3ub 22+ b suP)]z

The construction of the GF(65536) field is such that it is
natural to think of one such element as four elements of
GF(16) concatenated. With this in mind, introduced is the
convention that the GF(65536) symbol (ay+a,v)+(a,+asv)z
where a,, a,, a,, a; are GF(16) elements may also be written
as the vector:

ao
ai
az

as

Thus for example within this convention:

Yao

yar

o o o=
2

yas

where v is a GF(16) element.

US 8,549,378 B2

11

Following is a description of the symbols associated with
each chip location in an embodiment. The GF (2'9) symbol
associated with channel ke{0, 1, 2, 3, 4}, chip index je{1, 2,
3,4,5,6,7,8} is given by:

1
o
ki = Bx

2D

o)

where 1(j) is the indexing function that sets I(1, 2, ..., 8,9,
10)=12, 4, 6,7, 8,9, 10, 11, 12, 13}, and the B, are GF(16)

elements given by: 15

Bo=1
fy=u
B, -2 20
B3 =u?
Ba=l+u+eP+u®
25

Bs=1+u

In an embodiment, the checks are stored in locations
Xo.0s + - - X4,0 Which in turn is defined as

30
B

KXo =
35

forke{0, 1,2, 3, 4}. The two default symbols for the x and y
marks are given by:

40
1
4O
Xaef = Bs| a0
u
359)
u 45
1
L110)
Yaer = Bs| 100
u
A0 50

The role of the indexing function I(*) is to enable the single
bit correct/double bit detect feature when a channel is marked
and two chips are marked. 5

Following is a description of an embodiment of the parity
check matrix along with key properties. The parity check
matrix is H=[H, H, H, H, H,] where I, forie{0, 1,2, 3,4} is
given by:

60
Xio X1 ... Xis
Xh Xi oo X
=i x4 xh
X xbo. X 65

12

The following auxiliary matrices are defined:

HCO=/H DH H,DH HLDHH,DH,)
HY=/H,DH H,bH Hy$H H,$H||
H=/H,DH,H BH,HDH,H,DH,)
H™®=/H,DH,H ,DH,H,PH,H,BH,]

H™=/H,®DH,H ,DH,H,PH,HBH,]

The following is the basic result for this code, which essen-
tially ensures that the “error mirroring” effect caused by
correcting a failed channel does not result on a reduced error
correction and correction degradation with respect to having
used a fully maximum-distance separable (MDS) code.

Theorem 1. Each of the matrices H"" forie{0, 1, 2,3, 4} is
MDS over GF(2'9) this is, the 4x4 matrix with entries from
GF(2'°) formed by selecting any four columns is invertible.

As a matter of fact, a stronger and useful result holds. Let

Xspue Xaep -ty Yaer-i*)
Xopue Kagcn) Yap o))’
=k Xar o)t Faeroo)?
spue (Kagr,) (Yaer -it))
Xpue Kagcn)® Fagm))®

Then the following holds:

Result 1. Each of the matrices [H? A] forie{0, 1, 2, 3, 4}
is MDS over GF(2'9), that is, the 4x4 matrix with entries from
GF(2'°) formed by selecting any four columns is invertible.
This result is of importance to obtain various desired proper-
ties for the error control code when default marks and SPUE
are involved. The proof of Theorem 1 is based on purely
algebraic arguments. The proof of Result 1, is via an exhaus-
tive computer checking.

Following is a description of an embodiment of the
decoder.

The following computes the regular syndromes of the
code:

Z=Do®D,®D,BD;dD,

S=H DB H D BH,D,BH,D,BH,D,

Due to the manner in which the parity check matrix is
defined, the indexing of the vector S follows the following
convention:

The following computes the syndromes for each possible

5 channel mark:

SCO=SDH,Z ie{0,1,2,34}

The two chip marks are x, y. Adjusted for channel mark 1,
the chip marks are x_; and y_,); see below for an example
embodiment of how to compute the adjusted marks.

The following computes the syndromes that incorporate
the 2 chip marks for each possible channel mark:

§,0= Fenvey 69"(DY) TPBE "D
X e IS TBS,Tie{0,1,2,3,4}

i 2
S(D= (x(1) .V(—) @x(1) .V(—)Sz(@(x(1) .V(1) D

X en IS TBSie]0,1,2,3,4} 1)

US 8,549,378 B2

13

The following computes the flag that determines whether a
given channel mark solves the error equations:

F=~(85,7==0)&& (8, 7=—0)ie{0,1,2,3,4}

The value of i* is then determined as follows: 5

If an external channel mark has been passed to the decoder,
then set i* to be the value of that external channel mark.

Ifno external channel mark has been passed then, if exactly
one of the F, flags is true, i* is assigned to the corresponding

index. If no external channel mark has been passed and none ¢
ofthe F, flags are true (or two or more are true), then seti*=4
(a default value).
The error magnitude for a possible new error is computed
with:
15
A=) 2
CINP
5"
The error location is found as follows. First compute: 20
&= —
A=)
Sy 25
Conceptually, first it is required to find a value of r that
satisfies the quartic equation:
PB (5 cing¥ cim B i D iy VB ey com”D
X_pey Y_pmy)PO=0 30
Itis possible that there is no such solution, in which case an
uncorrectable error condition has been identified. The error
magnitudes for the erased locations can be found from:
35
o Y5 @rte) @yt (ST @re)
” XV iny DA o) Yio)
X S({‘.*) e)rze e)xz,‘-* SY‘.*) Dre
S 820 5 01 .

7 2
X)Xy @ XY=

In an embodiment, an algebraic method is utilized for
solving the quartic. This method also allows a computation of
the associated error magnitudes e, e, in a manner synergistic 43
to the solution of the quartic. First compute:

1
di=—
Xy Vi) @ X)) 5
4 1
YT yembem ®@XCm)

Next, obtain w,, W, as solutions for the quadratics 55

w2+w +ad,>=0
2 2_,
w, +w +0ad =0

through the module w,=quadroot(ad,*) w,=quadroot(ad,?). ¢,
Then use w,, w, to compute t, e, and e, with the following
equations:

€,=d (ST By ST Dew,
ey:dy(Sz(”'*)@x(,i*)S 1 (’i*)ﬂﬁewy

P=X ey WDV ey,

14

Next there are two broad cases:

d(r=0). This happens if and only if ¢=0. In this case, both
e, and e, have the correct error magnitude for the marked chip
position (the marks possibly being default). Also it will be
true that e=0.

d(r=0). This happens if and only if =0, and therefore e=0.
In this case we need to test which of the following expressions
is a valid location:

1D oy FDY o Doy DY o)

The valid locations are given by the chip locations adjusted
for channel i* AND the X, location (without any adjust-
ment whatsoever), for a total of N(M-1)+1 locations. The
code is constructed so that when a new chip error is present,
or when X, is injected in the absence of a new error,
exactly one of the expressions above will be valid.

If it is determined that exactly one of the expressions is
valid, then r is added the appropriate term (either X, or
YLy OF X(_iyDY iy Ifitis needed to add x_,«y to 1, then set
e <—e De. Ifitis needed to add y_,+ to 1, then set e <—e De.
These actions are summarized below in a chart that summa-
rizes the updates to 1, e, and e, that need to be performed
according to which solution to the quartic is found to be a
valid solution:

Valid location New value for e, New value for e,

rer e, <—e, e, e,
re1Dx) e, e, Dx_) e,<e,
re—1Dy ") e, e, e,<—e Dy
reDx Dy sy e—e,Dx e,<—e Dy

Finally, it is needed to trap some uncorrectable error situ-
ations. These are summarized as follows: the quartic has no
solutions whatsoever; the quartic does not have exactly one
valid solution; and the valid solution to the quartic is equal to
Xsppz- If any of the situations above hold, then the uncor-
rectable error flag is raised. One embodiment for doing this,
which is described herein, is to set, r<—0 if any of the above
holds. Because in this case e=0, the UE, condition described
below will ensure that these will be caught as uncorrectable
errors.

After the processing of these two broad cases, the process
continues with the computation of the UE flag, as well as the
potential bit flipping correction stage. Recall that if it is the
case that 3, =i* then the x was moved to X ;- for the purposes
of computing X_;+. When computing the UE flag it is
required to use “moved” x mark as well. An identical state-
ment holds true for the y mark. To this end, let

. {x Bx# B (2) 2
tE Xaer Br=Pr(3)

By # B+ (5) 6))

a_{y
’E Yaer By = B+ (6)

The global UE flag is computed by joining together several
partial UE flags. In an embodiment, these conditions include:
0. The syndromes adjusted for channel i* and the chip
marks must either be both zero or both nonzero. UE;=

(8, =088, —0)
1. If there is no external channel mark, then the {F,}, flags
must report either that exactly one channel can resolve

US 8,549,378 B2

15

the problem or that all channels can resolve the problem.
Thus, letting count denote the number of flags F, that are
true,

UE =(passed_external_channel mark==FALSE)&&
(count=1)&&(count=5)

2. This computes the UE’s flag contribution coming from
correcting the erasures. Note the use of X and § instead of
X, y, respectively. UBE,=(R==X_,)&&(e,!=0))|
(==Y 4.p&&(e,'=0)) This flag is used also in the com-
putation of the SPUE flag.

3. This computes the UE’s flag contribution coming the
various exception cases when processing the solution to
the quartic.

UE;=((r==0)&&(e=0));

4. This computes the UE flag that ensures the single bit
correct/double bit detect with a channel mark. Let
weight(e) denote the number of bits set to one (out of the
16 bits).

UE,=((weight(e)>1)&& (=X)& &($= Y.)

5. This flag is important to ensure that a channel failure
when there is no channel marked never mis-corrects.
The reason this condition is needed is because some
channel failures have the property that all of the S F, flags
turn out to be true. “*UE; is set to be true if all the
following hold: there is no external channel mark; all of
the S F, flags are true; and there are corrections outside of
non-default chip marks.

The complete UE flag can then be computed using:

UE-UE(|UE, |UE,[UE; UE,|UE,

In an embodiment, the correction is performed by letting
D,+<=D,.DZ and then applying the corrections (e,, €, €) to
both locations mirroring the errors.

Following is a description of an embodiment of a method
for adjusting the marks to reflect a channel mark. Itis assumed
that the channel being marked is denoted by the index i€{0, 1,
2, 3, 4}. The method for adjusting the marks for x and y is
described by

(ﬁxﬁzﬁ;)x B+ f
Xy =

(ﬁsﬁz A)Xdef B =5

(ﬁ o Bly g +h
Y- =

(ﬁsﬁzﬁi Yaer By =Bi

Following is an analysis of uncorrectable channel failures
in an embodiment. With a small probability, this code is
unable to correct for an unmarked channel failure. This sec-
tionanalyzes the precise conditions in which this happens. An
unmarked channel failure is uncorrectable when it is the case
that there is a subset At {0, 1, 2, 3, 4}, such the number of
elements in A is two or greater and furthermore we have that
for ieA,

B P=—0)&&(S,—0)

Pick any two distinct i, jeA

A. The case of no chips marked. In the case there are no
chips marked, and by letting E to be the channel failure error
vector, and ge{0, 1, 2, 3, 4} the index of the failing channel,
results in Z=F and S=I1E so that for every ie{0, 1, 2, 3, 4},

STO=(H DH)E

15

20

30

35

40

45

50

60

65

16

The code constructionis such that for every i€ {0, 1,2, 3,4},
H,=B,H,, where B, the diagonal matrix given by

B 0 0 0
0 B 0 0
B=ly o g o
00 0 g

From this, it can easily identify a class of errors that are
uncorrectable. Write S©’=(H_®H,) E=(B_®B,)H,E and con-
sider the class of errors U={E: HyE=0}. Clearly, it can be
shown that for EeU, for every i{0, 1, 2, 3, 4}, S?=0 and
therefore §,7=8,09=0, showing that this class of errors is
uncorrectable.

More generally it can be seen that §,9=8,9=0 if and
only if there exists \,, |, such that equation (4) below holds:

Xaer Yaef
Xor Vi [wl}
=(Bg @ B))HE
ngf Ygef 2
X Vi

Note that for all distinct i, je{0, 1, 2, 3, 4}, B=f, and
therefore BB, is an invertible matrix. Thus (B, ®B,)H, has
full rank, and for fixed y,,), there are multiple choices for E
that will solve this equation. By then varying 1, , ,, the set of
all possible errors E that are uncorrectable can be obtained.

The special case described earlier corresponds to the class
of uncorrectable errors that can be found by setting 1, =,=0.

The following text described special uncorrectable errors
(SPUES).

Analysis: Adding an SPUE at encoding time.

The overall parity check of the RAIM code is given by the
(N+r)x(MN) matrix

IN IN IN IN IN
“|Hy H Hy Hy Hy

where N=9, r=4, I, represents the NxN identity matrix, and
H, represents the rxN section of the parity check matrix that
contributions to the formation of the bottom r syndromes for
the data and checks in the ith channel.

The general method for incorporating an SPUE is based on
an augmented version of the above equation, given by equa-
tion (5) below

v Iv Iy Iy Iy 0
XspuE
Hyug = XSZPUE
Hy H H, Hy Hi _,
SPUE
XSpur

where the precise definition of X, will be given in the
subsequent discussion. Given the channel data vectors
{D,},_s** each of which has N-1=8 entries in GF(2'®) when
the encoder wishes to store this data with an SPUE mark, it

US 8,549,378 B2

17

chooses the checks ¢, ¢4, ¢,, ¢; (each of which is a single
entry in GF (2'°) so as to satisfy the equation

Co
Do
C1
Dy
2
Dy
3
D3
codcr e des
Dy®D, @D, ®Ds
1

Haug

This can be done as follows. Let ¢y, ¢,, &,, ¢; and &, &;, &5,
¢, satisty the following equations:

o o
0 Do
&) ¢y
0 Dy
& [
Houg 0 =0, Houg D, =0
3 03
0 D3
CoBC1 B2 BT SoBE DL DT
0 Dy®D, @D, ®D;
1 0

By defining ¢, =¢, ¢, forie{0, 1, 2, 3} and summing the two
equations above (sum=tP), equation (5) is obtained, as
desired. Now recall that the first column of H; is associated
with the check symbol for channel i) is equal to

Therefore, in an embodiment, to compute &, ¢, &,, ¢; the
following equation (equation 6) needs to be solved:

Po®Ps Pr@dfs f2@fs Bs®Pa][2, XspuE
Biep Bief FeB Besi|e | |Xu
Bl plop pepl Besl| e | | Xbu
Bepf Aes Aef Bepsllel | X

In summary, in order to incorporate an SPUE into the
codeword in an embodiment, take the checks &, ¢, &5, €5
from the standard output of the encoder and then XOR these
with the checks ¢, ¢,, ¢,, ¢; computed from solving equation
(6).

Specific values used for SPUE encoding and detection in
an embodiment. The following choice for X, passes all
the relevant tests for an SPUE described above and it addi-

10

15

20

25

30

35

40

45

55

60

65

18
tionally has the property that when a channel is marked and
two chips are marked, a single bit error injected and an SPUE
is present, the decoder will not mis-correct. Using the bit
ordering bgb, . . . b, s, this design chooses

Xyp=1000110111010101
£=1011010110110000
£,=1001001011101000
&=1111100001100000
£=1000100011111000

¢,=0101011111000000

Decoder processing of an SPUE with no unmarked errors
in an embodiment. The methodology for this section is to
follow the decoder processing in order to understand how a 90
B chunk of data that has an SPUE is processed. Using the
notation from the previous subsection, what the decoder
receives is

Co
Do
C1
Dy
o
D,
3
D3
codcr @ dos
Dy@®D, @D, ® D3

Arecvd = DA

where A is a vector with NM entries in GF(2'®) that represents
all of the errors affecting the data received. For this part of the
analysis it is not assumed that these errors are necessarily
marked or even correctable. Recall also from the previous
subsection that ¢, =¢D¢,.

The first stage of the decoder is to compute Z and S; these
quantities are independent of the values of the marks passed
to the decoder x and y as well as the value of the external
channel mark. These values are given by

0
z X
= HAjecva = HA@| 7 SPUE

N 2
XSPUE

4
XSPUE

8
XSPUE

where there are N 0 entries in the rightmost vector above. Let
S,.or spue be the syndromes obtained when exactly the same
data is encoded without an SPUE, and when exactly the same
errors are present in the data when it is retrieved. Thus

Snot sprE=[HoH HLH3H A

Note that the Z syndrome is unaffected by the application
of the SPUE mark, and therefore Z,,,, pr =7 The decoder

US 8,549,378 B2

19

then computes the channel adjusted syndromes S for ie{0,
1,2, 3,4}, using the formula S“?=S®H,Z, obtaining;

XspuE
2
o XspuE
ST = (Sor sPUE@ HI D) D |
XspuE
3
XspuE
XspuE

2
XspuE

(i)
= Snor sPUE D X
SPUE

8
XSPUE

where S, opr"" denotes syndromes adjusted for channel i
that would have been received if exactly the same data was
encoded without an SPUE and exactly the same errors are
present in the data when it is retrieved. The decoder next
computes the chip and channel adjusted syndromes according
to Equation (1). Note that in order to compute the chip and
channel adjusted syndromes for every possible channel
marked i€{0, 1, 2, 3, 4}, the decoder internally moves any
marks that are in a given channel to their default values. The
label x_,, and y_,, is used to denote the channel adjusted
marks that are obtained after the possible movement to their
default location. Using the same methodology as before, it
can be deduced that

S - 51 notSPUE @(x(z)y() Gaxﬁ—z) Y- z))XSPUE@
(x(iW(— z)@x() @.V(—i))XSPUE +XSPUE

S(: Sz notSPUE @(x(19’(1) @x(P .V(z)) XSPUE D
(x(iW(— z)@x() @.V(—i)) XSPUE +XSPUE
Suppose now that there are no unmarked errors in the data
received. It is known that if there was no SPUE encoded in the
data the following would hold true

St nor spre =0

55 o spuet D=0

and therefore the syndromes S, §,59 satisfy

= (x(zz)y() 2699‘(i))’2(z))XSPUE@(x(V(- 1)69
Yoy Byen W spue +Xpyg”

(D= ('xgz)y() 693(() .V(z)) XSPUE @(x(iW(— 1)69
Xty TV () 2V Xspre +Xspus®

Inan embodiment, the design must ensure that for any ie{0,
1,2, 3,4}, §, ("l);éO 8,920, so that the decoder is not
“trlcked” into thlnklng that there is a correctable error that can
be resolved using a channel mark. This leads to a first require-
ment for how to choose X gpp

For all ie{0, 1, 2, 3, 4},
{Xz’,j}ie{o, ..., 4}je{o, ..., 8}

O=(xc_ z))’(?) G935(- .V(z))XSPUE@(x(W z@x(1) D
Yeo Xspug +XSPUE

X, yE{Xdeﬂ Ydef}U

Assuming this requirement is met (this will be shown
later), the decoder then chooses i*=4 if no external channel
mark was passed, or it sets i* equal to the external channel
mark if one is given. The next step of the decoder is to
compute o and e, which the decoder obtains as:

a=8,

e=1

10

15

20

25

30

35

40

45

50

55

60

65

20

The decoder then proceeds to solve the quartic

L I e L e s T
a=0

This quartic has the four solutions

Xspuz
XspueDx
XSPUEGay(—i*)

XspreDx_pmay im)

Finally, recall from the decoder operation description that
x and § are the actually employed channel marks (standard,
not chaNnel adjusted, see Equation (7)). If %=X, then even
in the presence of an SPUE, we should never see e #0. Simi-
larly, if $=Y ;.5 we should never see e =0.

Summarizing the findings of an embodiment, a SPUE is
determined by checking whether i) one of the solutions to the
quartic is equal to X gz 3 1i) €=1; iii) if k=X ;, 5 then e,=0; iv)
If'$=Y ,,, then e =0. If these four conditions are true, then an
SPUE is declared.

Note: conditions iii) and iv) above may be implemented
ensuring that the SPUE flag is not set whenever UE, is on.

Analysis showing that correctable errors cannot be con-
verted into SPUE’s. It is of significant importance to demon-
strate that no correctable error, on whatever combination of
chip and channel marks and failures, can possibly be declared
an SPUE. This may be in principle possible because when the
decoder finds the 4 solutions to the quartic, it may be that one
of the solutions is Xp7 . It is shown below that this cannot
happen by proper choice of X .. If a correctable error is
such that S S =0 (thls happens when all errors are
marked or When anew error is solved by the RAIM correction
machinery), then e=0 and therefore in this case there is never
an SPUE declared. So suppose that there is an external chan-
nel mark and suppose that a new error has occurred in location
1 with an error magnitude of 1. Then

5,5= ¥ @’3 o Yl oDy P "D
Yo Mo+

= (xz((i 2, @x(2)’(z)) sy @(x(W)
S L
The decoder, as designed, computes e=1 and o=S 1(‘i*). It
then finds as solutions to the quartic the following quantities:

les
lenDaimy
leofDyim

Lo iy

Now, choose X ¢, - 50 that regardless of the value of i*e{0,
1,2,3,4}, and regardless of the value of x, y, 1 all of which can
take on a maximum of NxM+2 values (the 1 symbol can only
take on up to NxM values), none of the four quantities above
can be equal to Xz, then a correctable error will never
become an SPUE.

A computer program has been written that tests whether a
particular candidate for X, is viable in the sense of the
reasoning above. The value of Xz, given in the this docu-
ment has been shown to be viable in this manner. Note that
this implies that whenever the SPUE flag is raised, the UE flag
is raised as well.

Analysis of the probability of raising the SPUE flag when
an uncorrectable error is present in an embodiment. Assume

US 8,549,378 B2

21

that S, and S, are independent random variables each
uniformly distributed over GF(2!°\{0}. The vast majority of
the values that these variables can take correspond to uncor-
rectable errors. The question is asked, what is the probability
that with such uniformly chosen syndromes one can call the
result an SPUE? With this model, the values of e and c. that the
decoder computes are itself independent random variables
each distributed over GF(2'®) \{0}. With chance approxi-
mately 14' the value that the decoder calculates for e is equal
to one, which implies that the probability of converting an
uncorrectable error into an SPUE is smaller than %5'°. To
complete this assessment one needs to compute the probabil-
ity that when o is chosen at random, one of the solutions of the
quartic is equal to X7z

Implementation Notes for embodiments described herein.

Computation of the regular syndromes (S) according to an
embodiment. The computation of the syndrome S can be
simplified by noting that:

H; = B;H,
B 0 0 0
0 g 0 0

B;:

0o 0 g 0
00 0 g

and therefore S=[H,](D,DB,'D, BB, D.DR; DB D),
where [H,], is the ith row of Hy, and where ie{1, 2, 4, 8}. The
nature of the simplification relies on the fact that each of the
factors f3, are elements of GF(16). If the computation of the
syndromes S can be done in two cycles, then the hardware can
be reduced by half as follows.

The matrix H, can be split in 4 sections, each of which has
the same number of columns but ¥ of the number of rows:

The data from the channels Dy, D, D,, D5, D, is received

from the DRAM interface in two cycles, which allows the S;, 4

S,, S,, Sg syndromes to be computed using approximately
half the circuitry than it would be required in a single cycle
computation. Let D, , for ie{0, 1, . . ., 8} denote the symbol
received in channel k for the ith chlp, and let [D,], for je{0,
1,...,15} denote the jth bit in symbol D, ,. It is assumed that
in the ﬁrst transfer from the DRAM interface, the kth channel
presents the bits

[DrolofDroly - - - Dol [PralofDialy - - -
[Dr117 [DrslofDxsly - - - [Drgly

and in the [Dk,O]S[Dk,O]Q ce [Dk,o]lss [Dk,l]S[Dk,l]Q coee

[Dk,l]ISs cees [Dk,S]S[Dk,S]l cee [Dk,S]lS
This is accomplished as follows:

FDk:/Dk,O:Dk,lx cee

D;,7,0,0,0,0,0,0,0,0]

Sp,=DrsDico - - - D;.150,0,0,0,0,0,0,0]

where I, stands for the FIRST bits comlng from channel k
and S, stands for the SECOND bits coming from channel k.
Interpretmg Fp, and S5, as elements of GF(2'°), the method
for computing the syndromes is then to compute

Sy [Hol(Fp BB F o, BB FoOp3 Fp,BpsFi,) ®

w

15

20

(]
<

50

55

60

22

and then when the second beat of data is received,

Si‘_(1/2_)51@[1‘19]i(SDOEE’ﬁliSDl@ﬁziSDz@

B3"Sp,DPa"Sp,) ©
where in the above, (1/z) denotes the inverse of the GF(2'%)
element z (see Galois Field construction notes at the begin-
ning of this document). The key point to notice is that each
16-bit symbol in the vector (Fp@B,'Fprf.Fp®
Bs'Fp, BB, Fp,) is of the form:

[7,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0]

where ? is either O or 1. Multiplication of [H,], times a vector
with symbols having this structure in fact only requires half of
the binary columns of [H,], (more precisely, the first half of
each symbol column). A similar remark applies to the com-
putation in (9), which requires the same binary columns of
[H,], as the computation (8).

An embodiment of computation of the channel adJusted
syndromes. To compute the S syndromes, use SCP=
SPB,(H,Z)

An embodiment of a mathematical derivation of solution to

the quartic. Given locations X, . . ., X ,€GF(27) for some q, let
equarray
Ay, ..., X)={a:a==, 0.1 in for some 0.1 in
Ac{x;,...,x}}

An embodiment of how to solve the quartic follows. For the
e,e computatlons 4 coeflicients needed to be calculated, the
coefﬁmem of S, in e, was 1/(x+xy), while the coefficients of
S,ine was 1/ (y +xy) In this embodiment, instead of solving
2 quadratics serially, 2 quadratics are solved in parallel.

A 4P (X242)+ (xHp a=0

is equivalent to either or both of the following 2 systems of
equations:

}’2 +yr =Z,
24 (x+x2)z, =0
}’2 +Xr=z

2 —
72 +(xp+A)z,=a

The second equation in each set can be normalized using
z ~(xy+x*)w,_and Zy:(xy+y2)wy to produce:

[e4
W+

Wy = ————
T Gy a2y
2 [e4

WS+ W, = ————
Ty

whose solutions are connected to the first equations via:

2+ yr

=w
xy + x2 *
P2+ xr

=w
ay+yr

Using these identities the error value equations can be
rewritten as:

Sy + ¥S;

ey =

X2 +xy

Sy + x5
¥+ xy

€y=

US 8,549,378 B2

23

Now consider xw +yw,, using the equations above:

Py Paar
Wy + yw, = + =r
R EIy x+y x+y

Note that no additional pre-computation is required since
this embodiment is just using the square of the coefficients of
S, for e;. Now this embodiment can directly compute r=xw_+
yw, where it may be required to add 1 to either or both of w,
and w, since each equation has 2 solutions. If 1 is added to w,,
then we add e to e, if 1 is added to w, then e is added to e,

When both x and y are zero, an embodiment computes r as
the unique root of:

=a

since taking fourth roots is a linear map on GF (2°).
If y=0 but x is nonzero, an embodiment can solve for w,_as
above, and since:

2
wy = —
=

an embodiment can recover r with:
r=xw,

Since the denominator for e, is well defined, the same
formula remains valid when y=0. In this case set e =0.

FIG. 7 depicts a table that summaries updates that need to
be performed tor, e, and e, that need to be performed accord-
ing to which solution to the quartic is found to be a valid
solution.

FIG. 8 depicts a table that includes a binary pattern corre-
sponding to each symbol (equivalently chip or memory
device) in an embodiment of the RAIM code. In an embodi-
ment, this is the pattern that x and/or y need to be set to when
the corresponding chip is to be marked as suspect.

FIG. 9 depicts an error control code symbol definition
(DDR3 device) according to an embodiment. The 16 bit sym-
bol depicted in FIG. 9 is received over two DDR3 transfers.
The RAIM code is applied four times across the burst of 8 in
the DRAM, each processing 64 bytes worth of data for a total
of 256 bytes.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”,“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and

15

20

25

30

40

45

55

24

described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may

US 8,549,378 B2

25

be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

As described above, embodiments can be embodied in the
form of computer-implemented processes and apparatuses
for practicing those processes. In exemplary embodiments,
the invention is embodied in computer program code
executed by one or more network elements. Embodiments
include a computer program product on a computer usable
medium with computer program code logic containing
instructions embodied in tangible media as an article of
manufacture. Exemplary articles of manufacture for com-
puter usable medium may include floppy diskettes,
CD-ROMs, hard drives, universal serial bus (USB) flash
drives, or any other computer-readable storage medium,
wherein, when the computer program code logic is loaded
into and executed by a computer, the computer becomes an
apparatus for practicing the invention. Embodiments include
computer program code logic, for example, whether stored in
a storage medium, loaded into and/or executed by a computer,
or transmitted over some transmission medium, such as over
electrical wiring or cabling, through fiber optics, or via elec-
tromagnetic radiation, wherein, when the computer program
code logic is loaded into and executed by a computer, the
computer becomes an apparatus for practicing the invention.
When implemented on a general-purpose microprocessor, the
computer program code logic segments configure the micro-
processor to create specific logic circuits.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable

25

35

40

45

55

60

26

instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

What is claimed is:

1. A computer implemented method comprising:

receiving data including error correction code (ECC) bits,

the receiving from a plurality of channels, each channel
comprising a plurality of memory devices at memory
device locations;

computing syndromes of the data;

receiving a channel identifier of one of the channels;

removing a contribution of data received on the channel

from the computed syndromes, the removing resulting
in channel adjusted syndromes; and

decoding the channel adjusted syndromes, the decoding

resulting in channel adjusted memory device locations
of failing memory devices, the channel adjusted
memory device locations corresponding to memory
device locations.

2. The method of claim 1, further comprising:

performing an exclusive or (XOR) of contents of channels

not corresponding to the channel identifier and storing
results of the XOR into the channel; and

for each channel adjusted memory device location:

translating the channel adjusted memory device location
into two of the memory device locations; and

applying a correction to the two memory device loca-
tions.

3. The method of claim 1, further comprising:

for each channel adjusted memory device location:

translating the channel adjusted memory device location
into one of the memory device locations; and

applying a correction to the one memory device loca-
tion; and

performing an XOR of contents of channels not corre-

sponding to the channel identifier and storing results of
the XOR into the channel.

4. The method of claim 1, wherein the channel is a failing
channel.

5. The method of claim 1, wherein the channel is not a
failing channel.

6. The method of claim 1, further comprising:

receiving a memory device identifier of at least one of the

memory devices; and

removing a contribution of data received on the at least one

memory device from the computed syndromes prior to
the decoding.

7. The method of claim 1, wherein input to the decoding
includes a parity matrix with elements equal to a memory
device location raised to a power of two.

8. The method of claim 7, wherein the memory device
locations correspond to columns of another parity check
matrix of a Reed-Solomon code.

9. The method of claim 1, wherein addresses of memory
device locations in one channel are computed by multiplying
the addresses of memory device locations in another channel
by a constant.

US 8,549,378 B2

27

10. The method of claim 1, wherein the channel adjusted
syndromes are computed in parallel for every possible chan-
nel location, and wherein the received channel identifier
selects which channel adjusted syndrome to select.

11. A system comprising:

aplurality of channels, each channel comprising a plurality

of memory devices at memory device locations;

adecoder in communication with the channels, the decoder

configured for performing a method comprising:

receiving data including error correction code (ECC)
bits, the receiving from the channels;

computing syndromes of the data;

receiving a channel identifier of one of the channels;

removing a contribution of data received on the channel
from the computed syndromes, the removing result-
ing in channel adjusted syndromes; and

decoding the channel adjusted syndromes, the decoding
resulting in channel adjusted memory device loca-
tions of failing memory devices, the channel adjusted
memory device locations corresponding to memory
device locations.

12. The system of claim 11, further comprising:

performing an exclusive or (XOR) of contents of channels

not corresponding to the channel identifier and storing
results of the XOR into the channel; and

for each channel adjusted memory device location:

translating the channel adjusted memory device location
into two of the memory device locations; and

applying a correction to the two memory device loca-
tions.

13. The system of claim 11, wherein the method further
comprises:

for each channel adjusted memory device location:

translating the channel adjusted memory device location
into one of the memory device locations; and

applying a correction to the one memory device loca-
tion; and

performing an XOR of contents of channels not corre-

sponding to the channel identifier and storing results of
the XOR into the channel.

14. The system of claim 11, wherein the channel is a failing
channel.

10

15

20

25

35

40

28

15. The system of claim 11, wherein the channel is not a
failing channel.

16. The system of claim 11, wherein the method further
comprises:

receiving a memory device identifier of at least one of the

memory devices; and

removing a contribution of data received on the at least one

memory device from the computed syndromes prior to
the decoding.

17. The system of claim 11, wherein input to the decoding
includes a parity matrix with elements equal to a memory
device location raised to a power of two.

18. The system of claim 11, wherein the memory device
locations correspond to columns of another parity check
matrix of a Reed-Solomon code.

19. The system of claim 11, wherein addresses of memory
device locations in one channel are computed by multiplying
the addresses of memory device locations in another channel
by a constant.

20. The system of claim 11, wherein the channel adjusted
syndromes are computed in parallel for every possible chan-
nel location, and wherein the received channel identifier
selects which channel adjusted syndrome to select.

21. A computer program product comprising a tangible
storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for per-
forming a method comprising:

receiving data including error correction code (ECC) bits,

the receiving from a plurality of channels, each channel
comprising a plurality of memory devices at memory
device locations;

computing syndromes of the data;

receiving a channel identifier of one of the channels;

removing a contribution of data received on the channel

from the computed syndromes, the removing resulting
in channel adjusted syndromes; and

decoding the channel adjusted syndromes, the decoding

resulting in channel adjusted memory device locations
of failing memory devices, the channel adjusted
memory device locations corresponding to memory
device locations.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

